

Table Of Contents

Introduction 2

Articles 3

Api Documentation – What Software Engineers Can Teach Us 3

8 Great Examples of Developer Documentation 10

Developer Portal Components -

Software Development Kits (SDKs) 21

Great Api Documentation Requires Code Examples 38

Free and Open Source API Documentation Tools 44

Documenting APIs with Swagger 58

Documenting web APIs with the Swagger / OpenAPI Specification

in Drupal 66

Web APIs in Drupal: Success Takes More than an Endpoint 75

7 Trust Signals That Help an API Succeed 82

The 8 Stakeholders of Developer Portals 91

Upstream Developer Experience:

a Role for Developer Portals in Enterprise API Design 99

The Documentation Maturity Model 106

Events 112

API The Docs, London 112

Agile The Docs 124

API Documentation at WTD NA 2017 136

DevRelCon Beijing 2017 142

Authors 148

2

Welcome to the API Summer
2017 articles collection
With the first half of a busy year behind us, we have

taken some time to look back at the last 6 months

of research and experiences we accumulated in the

developer relations community. This e-magazine is

a collection of articles from our developer portals

newsletter from January until August 2017, along with

some articles we’ve found interesting but haven’t yet

sent out. We hope our digest gives you some new

insights about developer portals, while you enjoy the

last couple of weeks of summer!

Here’s the list of topics we featured in this digest:

• API documentation: research findings, free and open source

documentation generators, developer portal components, Swagger/

OpenAPI

• APIs in Drupal

• Developer portals: strategy, stakeholders, building trust, developer

experience, examples of great developer docs

• Event recaps: API The Docs, Agile The Docs, Write The Docs, DevRelCon

Beijing

Subscribe to our newsletter

If you’re interested in developer portals and API documentation, make sure

you subscribe to our newsletter to receive a copy of our Developer Portal

Components white paper and our future research. We also regularly share

video recordings of conference talks and workshops. Be the first to hear

whenever we have a new blogpost about API documentation, Developer

Portals best practices, Developer Evangelism, or about technology that will

help you maximise your API's developer experience.

We hope you’ll enjoy this emagazine. If so, stay tuned for the next edition that

will come to you in winter, early 2018!

Kristof and the Pronovix team

Kristof Van Tomme
CEO and co-founder of
Pronovix

http://goo.gl/BRLftB

3

Api Documentation – What Software
Engineers Can Teach Us

by Stephanie Steinhardt

https://www.parson-europe.com/en/blog/440-api-documentation.

html

JANUARY 30, 2017

https://www.parson-europe.com/en/blog/440-api-documentation.html
https://www.parson-europe.com/en/blog/440-api-documentation.html

4

When asking software engineers about API documentation, you soon find

out that there are two groups.

The first group is convinced that good code does not require

any explanation. Members of the second group frequently read

documentation and even enjoy writing it. You also find out that software

engineers have completely different opinions and approaches when

it comes to the layout, presentation, and contents of a perfect API

documentation.

For two years, our small team of technical communicators at Merseburg

University of applied science has been looking into the question on how

to improve API documentation. We conducted intensive research on the

contents and structure of good API documentation, but also on the target

group itself – the software engineers.

Research was conducted using interviews, questionnaire surveys, and a

series of observations, which made it possible to directly observe how

software engineers solve their programming tasks. We also looked at

existing studies in the field of developer documentation. As a result of

our studies, we can now draw a rather accurate picture what software

engineers require from good API documentation and make suggestions

on how to improve it.

Software engineers are different

We know that software engineers have different programming

experience and work in different system environments. With the help

of our interviews, the questionnaire, and the observation series, we also

identified two fundamentally different work methods. These differences

have a special impact on the reading behavior of software engineers and

need to be considered when creating API documentation.

Some software engineers intuitively begin to familiarize themselves with

a new API and start working from an example. They prefer to immediately

5

dive into the matter. They get to know the API bottom-up, based on the

code. Other engineers find it useful to first understand the API as a whole.

Before they start working, they read conceptual information and get into

the matter top-down. These different patterns became especially obvious

during our series of observation (see image 1). Out of 11 test persons,

six viewed and partly read the conceptual information of the tested

manufacturer documentation. Five ignored the concept part.

Analyzing eye-tracking records, we found that software engineers

often did not read pages line by line but rather scanned a page. Visual

elements, such as hyperlinks, example code, and the navigation bar,

caught their special attention. But they would only actually start reading

if the sample code did not solve their problem. This behavior was also

influenced by how the software engineers rated the difficulty of a task. If

they found a task hard to solve, they were more inclined to read.

Content structure

Looking at the different work methods and the reading behavior of

software engineers, it quickly becomes obvious that the design and

structure of API documentation is important. In the questionnaire, one of

the most mentioned shortcomings in documentation was lack of clarity.

That was rated far worse than other shortcomings, such as complicated

document structures (see image 2). Today, many manufacturers use

Image 1: Absolute time values: research time (color) vs editing time (gray) of the 11 test persons

6

different document types to reduce this complexity: getting-started

documents, developer guides, references, concepts, and examples. But

this classification is not always helpful.

In our series of observation, we found that software engineers could not

clearly determine which document type would hold the answer to their

question. What’s the difference between a getting-started document, a

tutorial, and a recipe? Technical writers are familiar with the classification

of different types of text and information; software engineers are not.

For software engineers, it is less important that information is bundled

into small portions. They look for answers. They want to quickly find

solutions. If they need to decide whether to find the answer in a getting-

started document, a reference, or in a tutorial, they are slowed down and

not helped sufficiently.

The observation series also showed that software engineers avoided

documents with titles they could not clearly interpret. For example, in our

study, they ignored the “recipe” document, even though the information

they were looking for was in it.

In larger API documentation projects, we still need to cluster information.

We may otherwise not find anything. Clustering information by content

makes sense, considering that software engineers always want to solve a

particular problem with the API. Take a parcel delivery API, for example. To

Image 2: Most mentioned shortcomings in API documentation (113 software engineers
could name three problems.) See translation of values at the end of the document.*

7

structure it with a getting-started document, concept, or reference would

make little sense. The focus should instead be on parcel delivery. This

makes it possible to organize the API by service providers, shipments,

addresses, and services.

We still need a general overview of and easy access to the API. Whoever

decides whether or not to use an API needs to see at first glance what

it offers, how it works, and how it integrates. This information should be

placed at the same level as the content clusters, for example, as an

overview. The title needs to be descriptive so that the reader immediately

knows what to expect. This is also important for the integration of the API.

Many software engineers told us in interviews and questionnaires that

the first steps in an API were the hardest. After this was done, they did not

need much documentation. That means that the information on how to

integrate the API should also be bundled and made available, similar to a

getting-started document.

Navigation is elementary

Inconsistent navigation makes it often even harder to structure

API documentation. We frequently found navigation bars in API

documentation that disappeared while scrolling, tables of contents at

the beginning of chapters, or navigation structures that did not contain all

chapter levels. After a few clicks we landed in no-man’s land and could

only return to our starting point with the browser buttons.

Like in website design we have to consider different criteria for the

navigation in API documentation. Breadcrumb menus and foldable

navigation bars are useful. Also, the navigation should always be visible

so that readers know where exactly they are in the overall structure.

8

Currently, much of API documentation lacks this kind of transparency.

The navigation structure is often too varied. Readers are overwhelmed

by the sheer number of possibilities. We need to find a balance between

a stern, single-track navigation, which may patronize software engineers,

and more diverse approaches that offer, for example, graphical menus for

presetting the language, document type or version – but can also quickly

cause confusion, despite their inherent flexibility.

Domain knowledge is essential

Results from other research as well as from our interviews also confirmed

the findings in our series of observation. Software engineers with

background knowledge about the test API could solve tasks much more

quickly than those with similar programming experience but without the

domain knowledge. The test API in our observation series came from the

e-commerce sector. Software engineers who had worked in this field had

almost no difficulty using it (see image 1: test persons 3, 4, 5, 6, and 10

came from the e-commerce sector).

That means that building up domain knowledge seems to play an

important role for learning a new API. But where do we place this

Image 3: Clear overall impression with clear navigation structure, visual division between code
examples and descriptive text (source: https://developers.paymill.com/API/index)

9

knowledge if we want to avoid a structure by text type and thus skip

the “concept” part? Considering the way software engineers work and

read, we need to place background knowledge and other important

information exactly where they will look.

Based on the results from our interviews, questionnaires, and observation

series, only code examples can serve this purpose. Software engineers

usually like sample code. In our series of observations, all test persons

looked at the samples and used them as a starting point for their own

coding. If we disguise important information as code comments and

make them visually stand out from other sample code, we can be sure

that this content will be seen and also read (see image 4). That does not

mean, however, that we should neglect detailed descriptions. They are

still read by software developers who are interested in the concepts.

This specific proposal and above mentioned results present only a

small part of our previously conducted research. Our research project is

still ongoing. We are interested in a larger number of test persons and

encourage companies to participate.

* Values in image 2 (top to bottom): complexity, too complex (document) structure,

incomprehensible language and phrasing, inconsistent chapter organization, missing

search functions, too large, type of layout/design.

Translation by Uta Lange, parson AG

Image 4: Example layout for code comments in sample code (adapted content, based on
https://developers.shipcloud.io/recipes/)

10

8 Great Examples of Developer
Documentation

by Adam DuVander

https://zapier.com/engineering/great-documentation-examples/

JANUARY 12, 2017

https://zapier.com/engineering/great-documentation-examples/

11

You just received an email from an angry developer. Something is wrong

in your documentation, and the developer just spent hours figuring it out.

Now it’s your turn to update the documentation and figure out how to

avoid those issues in the future. But how?

It’s hard to create great documentation. Working on it often means

ignoring another part of your job—and yet that time can be just as

valuable as your development work. A few hours a week spent improving

documentation can have a compounding effect. Developers will get stuck

less frequently, there will be fewer support requests, and hopefully fewer

angry emails. In fact, when you have great developer documentation, you

may even end up with happy, gushing emails.

This post shows eight examples of great developer documentation,

where the time invested yields great dividends for the app’s teams. Look

for the documentation features you like and use them in your own docs

to make your own documentation more valuable.

The Developer Home Page

When a developer lands on your documentation home page, they’re

likely:

12

1. Curious what you’re offering

2. Eager to get started

3. Stuck and in need of help

The documentation home page needs to serve that trio of needs at the

same time. The Heroku Dev Center does that with multiple ways to help

all three audiences find the information they need. To start, the core non-

navigation text on the page shouts the purpose of the site in 30 pixel font:

“Learn about building, deploying and managing your apps on Heroku.”

Below that, it speaks to developers in the eight languages supported by

Heroku. Immediately, developers know what Heroku offers and whether

there’s something for them.

The main and sub navigation also help developers zero in on the reason

they’re there–whether to solve a problem, get started, or explore more

about Heroku. If the major categories don’t grab the developer’s attention,

perhaps that list of common tasks will have what they need. Gather

feedback from developers if you aren’t sure what to include. Figure out

what your readers need most and make sure your developer home page

answers it right from the start.

A Getting Started Page

https://devcenter.heroku.com/

13

A quickstart or getting started guide plays an important role in introducing

new technology to developers. This document or section of your

developer website is also part of how you can make your API as popular

as pie. And as a likely first impression to developers, it’s worth some extra

attention.

GitHub is a tool with an advanced audience, but their getting started

document doesn’t use the reader’s knowledge level as an excuse to

make the content complex. At over 2,000 words it’s not a particularly

short guide, but it eases into its overview of what’s possible in the API. It

starts very simple, working its way up to useful calls including:

1. Un-authenticated test call

2. Request for public user profile

3. Repeat same request with full headers

4. Use basic authentication for the same request

5. Retrieve your own profile with basic authentication

The guide then dives into OAuth authentication, which is admittedly more

complex. Developers have already experienced five small victories in

successful requests, making them more likely to persevere through the

more difficult steps. Many getting started guides would instead begin

at this OAuth step, making it more likely for visitors to stop reading. As

you consider your own guide, think about how you might start simpler to

provide some early wins.

The GitHub guide goes on to cover repositories and issues, both likely

key pieces for developers using their API. Then GitHub provides excellent

next steps based on use cases, for an obvious next step after developers

know the basics.

https://zapier.com/engineering/api-marketing-like-pie/
https://zapier.com/engineering/api-marketing-like-pie/
https://developer.github.com/guides/getting-started/

14

Language-specific Guides

The most humbling part of traveling abroad as an English-speaking

American is when someone speaks English to me, despite it not

being their first language. I get a similar feeling when I come upon

documentation that is specific to JavaScript, Python, or another

programming language. Great documentation will meet the developers

where they are, providing specific instructions tailored to the language or

even framework the developer has already chosen.

My entire screen is filled with language options on StormPath’s

documentation home page. Behind each language is a page with a

quickstart, full documentation, an API reference, a project on GitHub,

and often more. Each of those resources is specific to the language or

framework.

StormPath has 25 distinct language or framework resource pages.

That’s a lot of effort on their team’s part to create and maintain these

documents, but it gives them a good chance of speaking the exact

dialect of every developer that reaches their site.

https://docs.stormpath.com/
https://docs.stormpath.com/

15

Copy-paste Ready Samples

Speaking the developer’s language is one way to get them started

quickly. Another is to provide the code needed in a way the developer can

simply copy and paste. You’ll find plenty of examples of documentation

where the code is almost ready to go: just insert your API key here, or

include the appropriate cURL command to make a complete API request.

The absolute lowest friction is to supply everything for the developer.

The Stripe API Reference does a fantastic job of copy-paste ready

sample calls. Each example request includes the proper cURL

parameters, an API key, as well as any identifiers needed for a successful

API call. The most impressive part is that you don’t need to be logged in,

or even have an account, to have a successful API call. That’s right: Stripe

creates a unique API key for every visitor to its documentation, providing

the ultimate low-friction path to sample calls.

Stripe made a huge commitment to its developers, but that’s also why the

payments company is commonly named amongst the top in providing

a great documentation experience. This approach may not be possible

for everyone, but it’s definitely worth finding ways to reduce friction and

make it easier for developers to try your API.

https://stripe.com/docs/api

16

API References

Once developers understand the basics of an API, they will likely leave

the documentation as they work on their implementation. When they

return, they come to answer a specific question. Usually, they’ll find the

answer in an API reference—something that needs to be easy for them to

find.

Clearbit documentation is easy to browse. Since it’s on a single page,

a great feature of an API reference, it’s Ctrl+F/Cmd+F-able. That is,

you can search using your browser’s find functionality. Every section is

detailed in the navigation on the left side, which expands as you scroll.

The far right column of Clearbit’s API reference is dedicated to example

requests and responses, organized by language. The snippets can be

copied and pasted nearly as-is; you just need to insert your API key.

The best part about Clearbit’s API reference, is that it can be yours, too.

Clearbit’s documentation viewer is based on the open source static

documentation tool Slate, which you could use to build your own easily

browsable documentation.

https://clearbit.com/docs
https://github.com/lord/slate

17

Open Source-style Documentation

It is important for someone within your company to own your

documentation, to ensure its accuracy, and make updates as information

changes. That said, you should also solicit feedback from your

community–the developers who use your API or tool. One of the best

ways to make your commitment to the community clear is to treat your

documentation like an open source project.

While I was at SendGrid, my colleague Brandon West open sourced their

documentation for a number of reasons:

Good documentation allows feedback from readers so they can point

out inconsistencies or typos and have them addressed quickly. Even

better is providing a feedback loop where those readers can see that

their issue has been noted and track progress and see how it fits into the

rest of the work to be done. Better still is a place where readers can jump

in and submit their own edits if they feel inclined.

There are now over 200 contributors to the docs repository, most from

outside of the company. Plus, hundreds of issues have been tracked and

fixed in the three years the repo has been open.

These results sound great, but they require work. For starters, it may take

https://sendgrid.com/blog/open-source-documentation/
https://sendgrid.com/blog/open-source-documentation/
https://github.com/sendgrid/docs

18

some engineering effort to extract your documentation from the rest of

your codebase. But the real work is the ongoing care of the community:

responding to questions, merging pull requests, and ensuring feedback

gets to the right internal team.

Interactive Documentation

In my teenage years, I played basketball, but I was something of an

academic player. I read books on how to practice and improve. One

lesson that has stuck with me was the between-the-legs dribble. Once

considered a showoff move, the author argued it was now a ball handling

requirement. Interactive API explorers are the between-the-legs dribble

of developer documentation.

Comic book company Marvel’s primary documentation is interactive.

Once you have an API key, you can test calls by filling out request fields

in a form and clicking the “Try It Out!” button. The response JSON will

appear below your form as it returns the same data your application will

receive.

The interactive docs are especially useful for the Marvel API, which

http://developer.marvel.com/docs

19

requires a hash for live API calls. The Marvel documentation handles the

hashing itself, which makes it easier for a developer to see the results

before committing the API to code.

Building it doesn’t have to be hard, either. There are a number of

platforms for interactive documentation, including hosted solutions from

Apiary and Readme, to help you make interactive examples for your own

documentation

A Developer Blog

The base expectation of documentation is that it accurately describes

what’s possible with an API or developer tool. Many of the examples in

this post have helped developers get started, but there’s one more thing

you should expect from great documentation: Inspiration. No part of your

developer site can provide that as well as a great blog.

While we’re pretty big fans of our own developer blog (it’s the one you’re

reading), we also read many others. In fact, we recently shared our 8

Resources for Keeping Up on APIs. One that stands out lately for its

useful technical content is Auth0 blog. Since the entire company supports

a technical product, this blog also includes the occasional company

https://developer.marvel.com/documentation/authorization
https://help.apiary.io/tools/interactive-documentation/
https://readme.io/
https://zapier.com/engineering/
https://zapier.com/engineering/api-resources/
https://zapier.com/engineering/api-resources/
https://auth0.com/blog/

20

update, but most of the posts are laser focused on authentication and

security topics.

What makes Auth0’s take on a developer blog special is that not

everything is about their product. The entries understand that developers

want to learn something new, so they share knowledge, not features. If a

developer has learned a lot about JWT tokens, for example, from reading

the blog, they’re bound to think of Auth0 when they need to implement

the technology.

Creating perfect documentation is difficult, if not impossible. But you

can absolutely make your documentation better. Some of these eight

examples of great documentation will be a challenge to implement, but

there are things you can do to begin today. Improve your getting started

guide, organize your documentation by language, or teach one small

lesson in a blog post.

http://www.shareknowledgenotfeatures.com/

21

Developer Portal Components -
Software Development Kits (SDKs)

by Kathleen De Roo and Kristof Van Tomme

https://pronovix.com/blog/developer-portal-components-part-6-

software-development-kits-sdks

DECEMBER 23, 2016

https://pronovix.com/blog/developer-portal-components-part-6-software-development-kits-sdks
https://pronovix.com/blog/developer-portal-components-part-6-software-development-kits-sdks
https://pronovix.com/

22

The main purpose of Platform Software Development Kits and Helper/

Client Libraries (we’ll use “SDKs” to address these collectively in our

writing) is to accelerate and simplify development. A well maintained SDK

is a trust signal that indicates the level of support and usage of your API

for a language, framework, or development platform. So indirectly SDKs

work as social proof, that indicates how many communities are already

using your API.

In this article, we’ll look at how the developer portals in our research

sample included SDKs. We’ll examine their functions, describe where we

found them in the site architecture and deduct best practices.

We’ll discuss what kind of SDKs the Portals in our sample used. We’ll

analyze their choices and evaluate them against the principles that Taylor

Barnett from Keen IO shared at APIstrat earlier this year. We’ll also talk

about the strategic choices that need to be made when deciding what

kind of SDKs an API should have.

SDKs are part of the API product

SDKs are software development tools that make it easier to build

applications. For web APIs that means SDKs are typically API connector

libraries that developers can include into their code. Because SDKs

implement APIs in language/platform native functions, they can save

developers a lot of time. For this reason developers will often look for

an SDK in their favorite language/framework before they even start

exploring your API.

That is why SDKs need to be done right: it is great if you can offer an

SDK for a developer’s favorite language, but if you offer one, you need

to make sure it works. SDKs should be up-to-date, fully tested and well

documented. It is inconvenient if an SDK is missing, but it is way worse if

you set an expectation and then break it with a buggy SDK.

https://en.wikipedia.org/wiki/Social_proof
http://www.slideshare.net/taylorsoitgoes/creating-a-great-developer-experience-through-sdks

23

In our research, 9 (out of 10) developer portals provided SDKs

(Twilio, DigitalOcean, Dwolla, CenturyLink, Keen IO, IBM Cloudant, Apigee,

Asana, Mashape).

Why do you need SDKs?

In her 2016 APIstrat talk, Taylor Barnett explained why Keen IO invests in

SDKs. The following is derived from her key points:

Better API design through SDKs

A best practice for developer teams is to implement at least one SDK

for the APIs they build. This way, during the SDK development, they will

experience themselves how easy or hard it is to implement their API. This

can help expose bugs or hidden complexity.

Full code coverage

Customers will only implement the API functions they need for their

application, an SDK implemented by your API team by contrast can create

an API client with full coverage. The resulting SDK will be more useful for

your community and will help expose bugs that might otherwise not be

found.

https://www.twilio.com/docs/libraries
https://developers.digitalocean.com/libraries/
https://developers.dwolla.com/pages/sdks.html
https://www.ctl.io/developers/sdks-tools
https://keen.io/docs/sdks/
https://docs.cloudant.com/libraries.html#supported-client-libraries
http://docs.apigee.com/api-baas/content/sdks
https://asana.com/developers/documentation/getting-started/client-libraries
http://docs.mashape.com/unirest
http://www.slideshare.net/taylorsoitgoes/creating-a-great-developer-experience-through-sdks

24

SDKs improve the developer experience

Developers just want to get the functionality they seek with as little hassle

as possible. It is obviously much easier for them to work with a language

or platform that they are already familiar with, that way they don’t even

need to understand how your API works. Besides this obvious benefit,

SDKs also help developers circumvent typical developer experience (DX)

problems.

One important example is authentication, which is one of the biggest

stumbling blocks when implementing an API. OAuth issues are often cited

as a crucial DX problem. While this problem can be alleviated with good

documentation, an SDK can help you completely sidestep this problem,

allowing developers to use the built-in authentication. An SDK can also

implement error handling for your API, which can be a massive boon

during debugging.

Example of an SDKs page (Apigee)

25

SDKs demonstrate best practices

For complex APIs, SDKs can help demonstrate best practices to

developers. Even if they don’t end up using your SDK, developers can see

how your APIs are tied together, and how you expect developers to use

them.

What types and how many SDKs do you
need?

Community SDKs

GitHub enables developers to build and publish an open source

community SDK for your APIs.

On first sight that might seem like a great deal: it can be a lot of work to

create a good SDK. Not having to pay for the initial development and

maintenance saves a lot of costs and if your API becomes very popular

this might be a viable strategy. Some companies that have open sourced

their application, consciously don’t invest in SDKs, and instead expect the

community to give back to their platform.

There is, however, a downside. In her talk on SDKs, Taylor Barnett

advises that it is better to make what she calls “product” SDKs. She also

explains why it is important to clearly differentiate between Product and

Community SDKs:

1. To indicate the trustworthiness and the expected longevity of an

SDK.

2. To explain differences in the developer experience: community

SDKs might not follow all best practices and will probably not be as

well documented.

http://www.slideshare.net/taylorsoitgoes/creating-a-great-developer-experience-through-sdks

26

3. To set proper maintenance and support expectations. Even if you

make the distinction, some community SDK issues will inevitably be

submitted through your Portal’s support channels, not addressing

them will damage your brand, but if you don’t own the code and if

you don’t have commit rights this might be difficult.

So while it might be tempting to rely on your community to create

and maintain open source SDKs, doing so is a form of technical debt.

Community SDK maintainers often disappear, or become upset about not

being paid while you benefit from their work. As a result your customers

might end up integrating with an older version of your API, unaware of

best practices, and get frustrated when an SDK doesn’t function properly.

In our research sample, Keen IO, Twilio, Asana, DigitalOcean, CenturyLink,

IBM Cloudant, Apigee and Dwolla categorized their SDKs according to

maintenance status and/or ownership (product/official/supported vs

community/third-party).

Example of SDKs categorized in a product (“official”) and a community section.
The scope of each SDK is also indicated (Collection, Analysis, Visualization)

(Keen IO)

27

Automatic SDK generation

There is a 3rd option besides community and product SDKs: it is also

possible to automatically generate SDKs. E.g. APIMATIC is a service that

automatically generates SDKs, tests, code samples and documentation. If

your API is not too complex, and you don’t have the people or resources

to make handcrafted product SDKs, this might be worth exploring.

There is, however, a caveat: while automatically generated SDKs save

a lot of time and money, and even remove some of the release timing

issues caused by sequential development, they lose a lot of the DX

benefits that product SDKs give. Without creating at least one SDK, your

team won’t be able to have immediate feedback on their API design. For

the time being, machines also lack the required intelligence of a human

Example of client library types: supported, unsupported, and third party libraries
(IBM Cloudant)

https://apimatic.io/
https://apimatic.io/

28

developer to extrapolate between the best practices of your API and the

programming language or platform the SDK is developed for.

How many SDKs should you create?

It makes sense to split SDKs into functional groups, e.g. to make the

distinction between data capture, processing, and visualization: a

developer might only need part of this functionality e.g. to integrate with

their frontend application. This also means that some parts of your APIs

might have SDK coverage in one language and not in another. It is not

always straightforward what languages/platforms to build SDKs for,

and it might take some investigation to figure out what would be good

developer communities to target. In any case it is a good idea to track

the usage of your API, if possible in conjunction with business metrics

across different SDKs. This allows you to analyse what communities are

providing you a better income to API calls ratio, so you can maximize your

growth and profitability.

In our research sample we found that in the range of published SDKs, the

number of product SDKs / community supported SDKs greatly varied

from Portal to Portal.

29

Overview of Libraries and Platform SDKs (as listed on the Portals’ SDK
pages):

Where are SDKs included in a developer
portal’s information architecture?

The overview page (frontpage) of 6 developer portals provided links to

SDKs in their header, footer or body section. Mashape referred to their

Unirest libraries in the sidebar menu of its overview page. 2 Portals (Asana

and Apigee) included their SDKs in the hierarchical sidebar menu on their

documentation pages.

Mashape set up a separate page for its Unirest product, a general

purpose library that developers can use to simplify HTTP REST requests.

So you could argue that this should not be categorized as a product SDK.

The other portals mainly listed their code on GitHub, which is developer-

friendly, free for open source projects, and has (at least for the time

https://github.com/

30

being) become a de facto standard in the developer community. One

company used both GitHub and Google code.

The developer portals in our sample all provided a list of available SDKs.

GitHub is an open platform that doesn’t have any barriers that prevent

developers from adding community SDKs. It is exactly this permissiveness

of GitHub and similar platforms that enables the community SDK

phenomenon: allowing API owners and their customers to build further

upon the work of other developers that they otherwise might never have

access to.

It is however crucial to establish a minimum of community management

processes to support and recognize the work of outside developers. API

owners need to have a discovery and curation process that helps them

identify new community SDKs that need to be evaluated and described

so they can be added to the SDK listing on a developer portal.

When community SDKs are not listed on a developer portal, it can be

time-consuming for developers to find out what product / community

Example of code samples on-site and a reference to GitHub for more information
(Twilio)

31

SDKs are available for an API.

Developer portals need to make it as easy as possible to discover,

evaluate, and select an appropriate SDK. Depending on the number of

APIs you provide, how related they are, and their complexity you will need

to provide tools to help developers navigate your SDK offering.

Onboarding with SDK documentation

If you want to make it as easy as possible for a developer to get
started with your API, you could provide platform specific onboarding
documentation. An SDK then becomes a part of your onboarding journey.
This allows developers that want to use your API to select their platform,
and get instructions on how to develop with your SDK instead of your API.
They don’t need to switch into an API context and can stay in the context
of their platform instead.

If your SDK has any dependencies on third party code, those can become
a major DX issue for developers. Taylor Barnett calls it the “Scary world of
dependencies” and recommends that SDK developers:

Example of code on GitHub
(Dwolla)

32

• Carefully evaluate what dependencies to choose when there are

multiple options, to make it as easy as possible for your target

communities.

• Address dependencies in the onboarding documentation.

• Pay special attention to any changes in dependencies between

SDK versions.

Example of libraries in the Getting Started section of a developer portal
(Asana)

Example of an onboarding guide with SDKs
(Twilio)

33

How are SDKs exposed?

Developer portals implemented:

• Categorization into one, two or three columns that follow a logical

grouping for the SDKs so that developers can understand faster

where they can find the SDK they need.

• Icons to make it easier to recognise code languages and platforms.

• CTAs (Call to Actions like “View Libraries”, “See the source on

GitHub”) that link to the code repository.

• Headlines (“Find our API in your favorite flavor” - DigitalOcean) to

engage users.

• Filtering options (CTAs like “Filter by language” or “Resources by

language” or via a hierarchical sidebar menu) for easy content

filtering.

• Labelling, like “Product SDKs” and “Community SDKs” (Keen IO) to

set proper expectations and to make it clear what the source of an

SDK is.

• Visual design elements e.g. change the text and library border

color, to make a distinction between product and community SDKs

(DigitalOcean).

34

Example of SDKs with a hierarchical sidebar menu
(Twilio)

Example of an SDK page where the languages are accompanied by their icons
(CenturyLink)

35

Labels
Developer portals applied the following labels to refer to SDKs:

• SDKs (mentioned on 5 Portals)

• Libraries (4)

• Client Libraries (2)

• Helper Libraries (2)

• Helpers (1)

• Libraries and Frameworks (1)

Some developer portals applied various labels to identify SDKs:

• SDKs / Libraries / Helper Libraries / Helpers (Twilio)

• Client Libraries / Libraries / Libraries and Frameworks (IBM

Cloudant)

• SDKs / Helper Libraries (Dwolla)

Example of all API Libraries, with language selector, categorized into two columns.
The text and table border distinguishes between “official” product and community libraries

(DigitalOcean)

36

Summary: SDKs on developer portals
- best practices

Providing practical examples through code improves DX: it can help

developers to learn from existing examples, to onboard easily and save

implementation time. The following are key tips on how to include SDKs

into a Portal’s documentation:

• Be consistent in terminology (choose one word to describe the

SDKs)

• Choose a code repository that enables community contributions -

in our sample, GitHub was by far the most popular choice

• Include multiple code languages and platforms to target different

developer communities

• Add filtering options to make it easier for developers to find the

proper SDK

Example of SDKs labelled as “Libraries”
(DigitalOcean)

37

• Make the code overview pages visually attractive: add icons,

columns, headlines

• Separate product and community SDKs (Taylor Barnett)

• Measure usage for your SDKs, so you can gain insights about your

customer communities (Taylor Barnett)

• Write the SDK documentation first and include sections for

troubleshooting and changelog/release notes - this will help you

evaluate the developer experience (Taylor Barnett)

• Keep it native: start with the languages that are the most popular

for your audience and that the documentation team is familiar with

(Taylor Barnett)

Many thanks to Taylor Barnett from Keen IO for her really insightful talk

about SDKs, we leaned heavily on her presentation for this chapter!

If you liked this article, check out our developer portal components series

about documentation patterns.

http://www.slideshare.net/taylorsoitgoes/creating-a-great-developer-experience-through-sdks
http://www.slideshare.net/taylorsoitgoes/creating-a-great-developer-experience-through-sdks
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns

38

Great Api Documentation Requires
Code Examples

by James Higginbotham

https://tyk.io/blog/great-api-documentation-requires-code-

examples/

JULY 17, 2017

https://tyk.io/blog/great-api-documentation-requires-code-examples/
https://tyk.io/blog/great-api-documentation-requires-code-examples/

39

Documentation is a very important element

of the developer experience. Most API teams

assume that the documentation of the API’s

endpoints is enough. However, that is only

the beginning of the API consumer journey.

Code examples provide the important

guidance necessary for developers to be

able to apply the documentation in practice.

They are the glue that helps connect-the-dots between reference

documentation for your endpoints and developers integrating your API.

Write ‘Getting Started’ code
examples first

Code examples come in a variety of forms, from just a few lines that

demonstrate how a specific endpoint works, to more complex examples

that demonstrate a complete workflow. Initially, the developer must

overcome basic understanding of your API and how it will help solve

their problem. It is important to remember that during this phase, the

developer just wants to see something work.

“Time to first Hello World”, or TTFHW, is a key metric for determining

API complexity. The longer it takes to get a developer to their first “win”,

the more likely the developer will struggle with your API and perhaps

abandon it or build their own solution.

To help developers get started quickly, provide concise examples that

remove all need for explicit coding. Look at the following example from

Stripe:

https://stripe.com/docs

40

```ruby

    require “stripe”

    Stripe.api_key = “sk_test_BQokikJOvBiI2HlWgH4olfQ2”

    Stripe::Token.create(

      :card => {

        :number => “4242424242424242”,

        :exp_month => 6,

        :exp_year => 2016,

        :cvc => “314”

})

```

Notice in this example that there is little code to write – fill-in your API

key and the credit card credentials and you are ready to go. Example

code that requires that you write lots should be avoided at this stage,

as it requires you to learn more about the API before you can try it out.

Never require developers to write code to complete an example when

first trying out your API – instead, make it easy to get started and see the

request work successfully.

Workflow examples

After the developers have had some time to try our your API using some

getting started examples, the next step is to begin to demonstrate

common use cases and workflows.

Workflow examples focus more on achieving specific outcomes. As a

41

result, we should use copious inline comments to explain why each step

is necessary. Be willing to include hard-coded values for easier reading.

Choose variable and method names that make the code easy to read and

understand. Below is an example of charging a credit card using Stripe:

```ruby

# Set your secret key: remember to change this to your live secret key in 
production

# See your keys here: https://dashboard.stripe.com/account/apikeys

Stripe.api_key = “sk_test_BQokikJOvBiI2HlWgH4olfQ2”

# Token is created using Stripe.js or Checkout!

# Get the payment token submitted by the form:

token = params[:stripeToken]

# Create a Customer:

customer = Stripe::Customer.create(

  :email => “paying.user@example.com”,

  :source => token,

)

# Charge the Customer instead of the card:

charge = Stripe::Charge.create(

  :amount => 1000,

  :currency => “usd”,

  :customer => customer.id,

)

https://stripe.com/docs/charges


42

# YOUR CODE: Save the customer ID and other info in a database for 
later.

# YOUR CODE (LATER): When it’s time to charge the customer again, 
retrieve the customer ID.

charge = Stripe::Charge.create(

  :amount => 1500, # $15.00 this time

  :currency => “usd”,

  :customer => customer_id, # Previously stored, then retrieved

)

```

It is important to note that while these examples will be more complex

than those found from the first milestone, they shouldn’t exceed the

average screen size. The examples need to be short enough to explain

the concepts but not too long that they require considerable time to

understand. It is often best to demonstrate scenarios that are easily

understood and likely map to your customer needs.

Error case examples

The final step is to help your developers understand how to integrate your

API into their production environment. This includes how to catch errors

to help developers properly troubleshoot problems, and retry loops

when a minor outage occurs. You may also want to demonstrate how to

catch and recover from bad data provided by end users. Finally, if you are

enforcing rate limiting, then show how to obtain the current rate limits for

their account.

43

Where do you include code examples?

Now that you have written some nice code examples to help get

developers started, demonstrate common workflows, and how to handle

error cases, we need a place to put them. There are a few options you

may wish to consider:

1. Embed the code examples into the description of your OpenAPI

definitionUtilize a static site generator such as Jekyll or Hugo to

capture your code examples and additional documentation

2. Select a third-party solution such as Readme.io or the

documentation feature of your API management layer

No matter the method you choose, sharing code examples that guide

developers throughout the integration process will help them be happy

and successful – and no one likes a grumpy developer!

https://jekyllrb.com/
https://gohugo.io/
https://readme.io/

44

Free and Open Source API
Documentation Tools

by Diána Lakatos

https://pronovix.com/blog/free-and-open-source-api-documentation-

tools

MARCH 30, 2017

https://pronovix.com/blog/free-and-open-source-api-documentation-tools
https://pronovix.com/blog/free-and-open-source-api-documentation-tools
https://pronovix.com/

45

We explored free and open source API documentation solutions, and

compiled the results of our research in this article.

Introduction

Definitions

An Application Programming Interface (API) is a set of clearly defined

methods of communication between various software components.

Organizations share their APIs so that developers can build applications

that use the services of their software.

API documentation describes what services an API offers and how to

use those services. Good quality documentation is essential to developer

experience, which in turn will impact the adoption and long-term success

of an API.

We wrote this article for:

• API providers: To provide an overview of free and open source

tools for companies that want to share, update or customize their

API docs or developer portal.

• Developer portal builders: To provide an independent review

of existing developer portal solutions that developer teams

tasked with building developer portals can use as a reference in

discussions with their clients, to make it easier to select the one

that best fits their needs.

• Technical writers: To create a resource that tech writers can use to

select the API documentation infrastructure that fits best with their

existing authoring workflows.

46

Open source API documentation
generators

API providers describe their API’s functionalities with specifications and

definitions, like OpenAPI/Swagger, RAML, API Blueprint, I/O Docs or

WSDL. API documentation solutions convert these definitions into a

structured, easy to use API documentation for developers.

API documentation tools are sometimes named after the type of definition

they take, e.g. Swagger generates API documentation from Swagger

definitions. They also often include the definition in their naming, e.g. RAML 2

HTML.

API documentation generators using the
Swagger/OpenAPI specification

The Swagger specification is a powerful definition format that describes

RESTful APIs. It maps all the resources and operations associated with a

RESTful interface and makes it easier to develop and consume an API.

Recently the Swagger standard changed its name to Open API, you can

find out more about the initiative at the Open API Initiative website. As a

leading standard Swagger/OpenAPI has accumulated a large range of

API documentation generators that use the specification format.

Swagger

Swagger is a complete framework for describing, producing, consuming,

and visualizing RESTful web services.

Use the Swagger ecosystem to create your API documentation:

document APIs with JSON using the Swagger spec, and use the Web UI

https://www.openapis.org/
http://swagger.io/

47

to dynamically convert it into API documentation in a web page. Your API

documentation will be displayed through the Swagger UI, which provides

a well-structured and good-looking interface.

Swagger is free to use, licensed under the Apache 2.0 License. You can

find all Swagger-related public tools under the swagger-api GitHub

account.

Many open source projects and commercial vendors provide Swagger

integrations, so make sure to check out the list of available solutions

before building new tooling - there is a big chance you will find an existing

solution that fits the needs of your project.

As today’s leading API ecosystem, it’s also the best documented and

supported. Should you decide to document your APIs with Swagger, you

can find plenty of resources, tutorials, examples and help online.

DapperDox

With DapperDox you can author readable guides and have them form

part of a cohesive set of documentation along with the API specifications:

You can inject relevant documentation into the rendered specification

page.

Example of an API documentation displayed with the Swagger UI

https://www.apache.org/licenses/LICENSE-2.0
https://github.com/swagger-api
https://github.com/swagger-api
http://swagger.io/open-source-integrations/
http://swagger.io/commercial-tools/
http://dapperdox.io/

48

To create your API documentation with DapperDox, point DapperDox

at your OpenAPI/Swagger specifications, add some documentation in

Markdown and let DapperDox do the rest.

ReDoc

ReDoc uses the OpenAPI specification and generates a responsive site

with a three-panel design. It pulls markdown headings from the OpenAPI

description field into the side menu, and supports deep linking.

ReDoc aims to make deployment extremely easy, provides a wide

support for OpenAPI objects, and offers interactive documentation for

nested objects. You can include code samples via a third-party extension.

https://github.com/Rebilly/ReDoc

49

API documentation generators using the
RAML specification

RAML (RESTful API Modeling Language) helps you manage the whole API

lifecycle from design to sharing.

RAML is built on broadly-used standards such as YAML and JSON, and is

language neutral with tools for: Java, Javascript, .Net, PHP, Python, Ruby,

etc.

To create your API documentation with RAML, you can choose open

source tools like the API Console or RAML 2 HTML . Documentation can

be generated quickly and on the fly. With parsers available for many

languages you can create your own custom docs and interactive scripts

like e.Pages and Spotify.

RAML 2 HTML

RAML 2 HTML is a simple RAML to HTML documentation generator with

theme support, written for Node.js.

Example of an API documentation displayed with RAML 2 HTML’s default theme

http://raml.org/
https://github.com/raml2html/raml2html

50

RAML 2 HTML ships with a default theme, but you can install more from

NPM. For example, to render RAML to Markdown, you can install the

raml2html-markdown-theme.

RAML Api Console

Using the RAML API Console you can create HTML documentation from

a RAML specification. It allows browsing of API documentation and in-

browser testing of API methods.

There are two ways you can include the console: directly, or within an

iframe.

API documentation generators using the
API Blueprint specification

API Blueprint is a Markdown-based document format for writing API

descriptions and documentation. With API Blueprint you can quickly

design and prototype APIs to be created, or document and test already

deployed APIs.

Example of an API documentation displayed with the RAML API Console

https://github.com/mulesoft/api-console
https://apiblueprint.org/

51

Thanks to its broad adoption there is a wide range of tools built for

API Blueprint. From various standalone tools such as mock server,

documentation and testing tools to full-featured API life-cycle solutions.

Snowboard

Snowboard is an API Blueprint parser and renderer. It offers a colourful

default theme illustrating API request types and responses, and can also

be used with custom templates.

Aglio
Aglio renders HTML from API Blueprint files, with support for custom

colors, templates and themes.

Example of an API documentation displayed with Snowboard

https://github.com/subosito/snowboard
https://github.com/danielgtaylor/aglio

52

Other free and open source API
documentation generators

Besides the ones detailed above, there are plenty of different open

source API documentation generators for different languages and API

specifications. Here’s a brief summary of the ones we’ve explored:

• I/O Docs: I/O docs is an API definition format for the TIBCO

Mashery network that comes with a live interactive documentation

system for RESTful web APIs. By defining APIs at the resource,

method and parameter levels in a JSON schema, I/O Docs will

generate a JavaScript client interface.

• Slate: Slate helps you create responsive API documentation with

a clean, intuitive design. Although it’s built in Ruby, when you write

docs with Slate, you’re just writing Markdown, which makes it

simple to edit and understand. By default, your Slate-generated

documentation is hosted in a public Github repository, which

makes it simple for other developers to make pull requests to your

Example of an API documentation displayed with Aglio (Cyborg two-column theme)

https://github.com/mashery/iodocs
https://github.com/lord/slate

53

docs if they find typos or other problems. Of course, if you don’t

want to use GitHub, you can also host your docs elsewhere.

• Whiteboard: A NodeJS based project started from Slate.

• apiDoc: Inline documentation for RESTful web APIs, that creates a

documentation from API annotations in your source code.

• CUUBEZ API Visualizer: Java based API solution to visualize the

documentation of RESTful web APIs. This API visualizing framework

supports all JAXRS based java REST frameworks and non-JAXRS

java based REST frameworks that are currently available in the

industry.

• Apidox: XML powered live interactive API documentation and

browsing for RESTful APIs.

• Carte: A simple Jekyll based documentation website for APIs.

Designed as a boilerplate to build your own documentation, heavily

inspired by Swagger and I/O docs.

• Docbox: A responsive website generated from Markdown

documentation content. It’s dynamically updated with React.

And a free one:

• API Docs: Although not open source, API Docs provides a hosted

public API documentation service for OAS (Swagger) and RAML

specifications for free. Features like custom domains, themes, and

analytics, are available for a nominal cost through the StopLight

integration.

General purpose open source
documentation tools

Although very handy, API documentation generators are not the

only way to render and display your API docs. Many general purpose

documentation tools can also get the job done. You could consider using

them if you already have one in place, or if you have more documentation

tasks than documenting your API alone.

A couple of documentation tools you can check out:

https://github.com/mpociot/whiteboard
http://apidocjs.com/
http://apivisualizer.cuubez.com/
http://apidox.net/
https://github.com/Wiredcraft/carte
https://github.com/tmcw/docbox
https://api-docs.io/
http://stoplight.io/?utm_source=apidocs&utm_medium=cost

54

• Dexy: Dexy is a multi-purpose project automation tool with

lots of features designed to work with documents. It does the

repetitive parts for you, and thus makes it easier to create technical

documents. Many developers use it to document APIs, because

combined with other open source tools, Dexy is able to run your

example code, save the results, fetch data from an API, and post

your docs to a blog or a wiki.

• Docco: Docco is a quick-and-dirty documentation generator.

It produces an HTML document that displays your comments

intermingled with your code.

• Doxygen: Doxygen is the de facto standard tool for generating

documentation from annotated C++ sources, but it also supports

other popular programming languages such as C, Objective-C, C#,

PHP, Java, Python, IDL, Fortran, VHDL, Tcl, and to some extent D.

To document your API, generate an online HTML documentation

browser or an offline reference manual, and configure Doxygen to

extract the code structure from your source files.

We mentioned these tools to give you an idea of how you can use

general documentation tools for API documentation, but there are many

more to choose from, if you’d like to follow this approach.

Developer portals

Good API documentation is necessary, but not sufficient for a great

developer experience, so it’s better to think about the whole experience

in terms of a developer portal that will fulfill all developer needs.

Besides the API documentation, a developer portal can include guides

and tutorials, reference pages, FAQs, forums, other support resources,

software development kits, etc. For an overview of all the different types

of documentation a good developer portal needs, check our blog post

series on developer portal components or receive it as a white paper in

http://www.dexy.it/
https://jashkenas.github.io/docco/
http://www.stack.nl/~dimitri/doxygen/
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns

55

your mailbox by subscribing to our Developer Portal mailing list.

At Pronovix, we work with Drupal, an open source content management

system to build a full-featured developer portal, a toolbox for developer

relations with integrated API documentation.

Drupal has a couple of modules that you can use to document your

APIs, one of which is the API module originally developed to produce

the Drupal developer documentation available at api.drupal.org.

It implements a subset of the Doxygen documentation generator

specification, with some Drupal-specific additions. If you’d like to publish

your API documentation and you plan to extend it into a developer portal,

you could give Drupal a try, as it’s free, open source, and has extensive

documentation both for the core CMS and the API module.

We have done extensive work with Apigee’s developer portal that is

built in Drupal 7, and we are building a new developer portal in Drupal 8,

Drupal’s latest release. As API documentation is a key requirement, it will

include a custom API documentation generator that can import Swagger/

OpenAPI files and that splits the documentation for individual endpoints

into separate entities so that you can control access granularly and easily

extend your documentation (especially important for partner portals and

for organisations that have strong security requirements). Our ultimate

goal is to share our developer portal package as an open source Drupal

distribution.

Conclusion

As you can see, with some research and hopefully with the help

of this article, you have a good chance to find an open source API

documentation tool that fits the needs of your project.

Although this article features quite a few solutions, there are many others

available or in development, and new ones are popping up continuously.

Please let us know in the comments if you’ve tried a solution that you’d

recommend to others!

https://bit.ly/devportals
https://www.drupal.org/
https://www.drupal.org/project/api
https://api.drupal.org/api/drupal

56

Comparison table

Quick summary
Source

(specification)
Live demo

Swagger

Whole ecosystem, lots of

integrations

Good-looking UI for docs

Widely used, many

resources available

Swagger/

OpenAPI
Swagger demo

DapperDox

Inject relevant

documentation right into

the rendered specification

page

OpenAPI,

Markdown

DapperDox

demo

ReDoc

Easy deployment

Wide support for OpenAPI

objects

Interactive, responsive

documentation

OpenAPI ReDoc demo

RAML 2

HTML

Simple RAML to HTML

documentation generator

theme support

RAML,

NodeJSwith

RAML 2 HTML

demo

RAML API

Console

Browsing of API

documentation and in-

browser testing of API

methods

RAML, NodeJS RAML API

Console demo

Snowboard API Blueprint renderer API Blueprint Snowboard

demo

Aglio API Blueprint renderer with

many custom themes

API Blueprint Aglio demo

http://petstore.swagger.io/
http://dapperdox.io/docs/overview
http://dapperdox.io/docs/overview
https://rebilly.github.io/RebillyAPI/
https://rawgit.com/raml2html/default-theme/master/examples/helloworld.html
https://rawgit.com/raml2html/default-theme/master/examples/helloworld.html
https://anypoint.mulesoft.com/apiplatform/popular/#/portals/organizations/52560d3f-c37a-409d-9887-79e0a9a9ecff/apis/5502/versions/5487/pages/30295
https://anypoint.mulesoft.com/apiplatform/popular/#/portals/organizations/52560d3f-c37a-409d-9887-79e0a9a9ecff/apis/5502/versions/5487/pages/30295
https://htmlpreview.github.io/?https://github.com/subosito/snowboard/blob/master/examples/alpha/Real%20World%20API.html
https://htmlpreview.github.io/?https://github.com/subosito/snowboard/blob/master/examples/alpha/Real%20World%20API.html
http://htmlpreview.github.io/?https://raw.githubusercontent.com/danielgtaylor/aglio/blob/master/examples/cyborg.html

57

I/O Docs Live interactive API

documentation system

for I/O Docs specification

format

I/O Docs (JSON) I/O Docs

demo

Slate

Clean, intuitive design

Write in Markdown

Collaboration through

GitHub

Markdown (Ruby) Slate demo

Whiteboard NodeJS based Slate

alternative

NodeJS Whiteboard

demo

apiDoc Inline documentation for

RESTful web APIs

NodeJS apiDoc demo

CuuBEZ API

Visualizer

Visualize the

documentation of RESTful

web APIs

Java CuuBEZ API

Visualizer

demo

Apidox XML powered live

interactive API

documentation and

browsing for RESTful APIs

XML, PHP Apidox demo

Carte A simple Jekyll based

documentation website

for APIs

Jekyll, YAML Carte demo

Docbox A responsive website

generated from Markdown

documentation content

Markdown Docbox demo

API Docs Free, hosted API

documentation

OpenAPI,

Swagger, RAML

API Docs
demo

https://support.mashery.com/io-docs
https://support.mashery.com/io-docs
https://lord.github.io/slate/
https://wifidistribution.com/docs/
https://wifidistribution.com/docs/
http://apidocjs.com/example/
http://apivisualizerold.cuubez.com/demo.html
http://apivisualizerold.cuubez.com/demo.html
http://apivisualizerold.cuubez.com/demo.html
http://apidox.net/demo/apidox.php
http://wiredcraft.github.io/carte/
https://50-53007065-gh.circle-artifacts.com/0/tmp/circle-artifacts.8SMOD8H/index.html#our-api
https://giphy.api-docs.io/1.0/welcome
https://giphy.api-docs.io/1.0/welcome

58

by Adam Locke

Documenting APIs with Swagger

https://www.docslikecode.com/articles/api-docs-with-code/

JUNE 3, 2017

https://www.docslikecode.com/articles/api-docs-with-code/

59

A Pirate’s Life for Me: Documenting APIs
with Swagger

Our team starting developing a new API (in C#), which I took as an

opportunity to implement Swagger (now the OpenAPI Specification),

an open source project used to describe and document RESTful APIs.

I wanted to show our developers and support engineers that injecting

documentation into the code can reduce response time, mitigate errors,

and decrease the point of entry for new hires. To illustrate those gains, I

needed to develop a proof of concept.

Why Swagger?

Swagger is open source and includes a UI to display your API

documentation, which can be built from source code or manually in

JSON. Swashbuckle, a combination of ApiExplorer and Swagger UI,

enables Swagger for .NET environments, which was just what we needed.

Note: This article applies to .NET environments. Swashbuckle uses a different

package for .NET Core environments.

Prepare to Swashbuckle

Swashbuckle requires a bit of coding to implement, but using Paket helps

to manage .NET dependencies. With Paket, I can add the necessary

Swashbuckle NuGet packages to my API project and ensure that they

are current. If I need to add more packages, I can install and manage

those packages through Paket.After installing Paket, I run the following

command to add Swashbuckle as a dependency to my C# project.

https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://fsprojects.github.io/Paket/

60

Now that Swashbuckle is available to my project, I can add Swashbuckle

to the Startup.cs file, which is the application startup file for the API. I

add each of the following Swashbuckle libraries so that the solution can

access the necessary methods.

Then, I add the following code (see example that follows),

much of which is supplied in a Swashbuckle example file. In the
SwaggerGeneratorOptions class, I specify the options that I want

Swashbuckle to enable.

• schemaFilters post-modify complex schemas in the

generated output. You can modify schemas for a specific member

type or across all member types. The IModelFilter is now the
ISchemaFilter ISchemaFilter. We created an IModelFilter
to fix some of the generated output.

• operationFilters specifies options to modify the generated

output. Each entry enables a different modification for operation

descriptions.

61

62

After enabling these options, I could include code that enables the

Swagger UI, but that interface looks a bit outdated. Also, I want to

incorporate additional documentation written in Markdown, which

the Swagger UI does not support. After reading online forums and

posting questions to the Write The Docs channel on Slack, I discovered

DapperDox.

Using DapperDox

DapperDox is an open source documentation framework for OpenAPI

specifications. Instead of having Swashbuckle publish our API

specification in the Swagger UI, I added the following code to the Startup.

cs file. This code writes the Swagger specification to a swagger.json

file.

DapperDox reads this file and displays it in its own UI. I installed

DapperDox and pointed it at my swagger.json file, and saw nothing

but error messages in my command prompt.

Reading through the DapperDox documentation, I discovered that “When

specifying a resource schema object…DapperDox requires that the optional

schema object title member is present.” This requirement was problematic,

because Swashbuckle does not include a method for adding members to

a schema in the generated swagger.json file. Additionally, it took some

tinkering in the code for me to realize that the missing title member on

the definitions model is what caused DapperDox to break.

Fixing the output

The Swashbuckle documentation offered little help in this regard, so I

turned to one of our developers. After reviewing the code together, my

http://www.writethedocs.org/slack/
http://dapperdox.io
http://dapperdox.io/docs/spec-resource-definitions

63

developer counterpart created a SwaggerTitleFilter method that

adds a title member to the definitions model in the resulting

swagger.json file. The title member displays in the generated

documentation as a link to the referenced object, creating a hyperlink

between the two objects.

The following code implements an IModelFilter that causes

Swashbuckle to generate a title member for any schema. The

SwaggerTitleFilter was referenced in the previous code sample

I compiled the code and Swashbuckle generated an updated

swagger.json file. With the title member added to the
swagger.json output, I pointed DapperDox at the directory containing

my swagger.json file.

I opened a browser and entered http://localhost:3123 , which is

where DapperDox runs by default, and it worked! DapperDox displayed

my swagger.json file and created interactive documentation that

clearly displays the requests, responses, and query parameters for the

API. I demoed the output for a few developers and support engineers,

and they were over the moon.

64

Next steps

With this framework in place, we can extend Swashbuckle to future

APIs and use DapperDox to host the swagger.json file for each. The

resulting output lives with the code, and provides documentation that

developers and support engineers can access locally by running a single

command.

To add documentation beyond just the generated JSON output,

DapperDox works incredibly well. I can author short tutorials that describe

how to integrate our API with third-party services, which developers can

easily review and modify through pull requests. As the API grows, we

can add a README file that describes enhancements, modifications, and

new integration points. Non-API documentation will live in an \assets

directory, which DapperDox includes at build time.

Each time that the code builds, the swagger.json file updates with

the most current information. Developers and support engineers just

run the .\dapperdox command and specify the directory where

the swagger.json file lives. As the code changes, so does the

documentation, so technical debt approaches zero.

65

Lessons learned

Static site generators are all the rage, and for good reason. Providing a

lightweight framework that can be deployed quickly is a huge asset when

documenting APIs, especially external-facing documentation. Numerous

options are available, but DapperDox felt like the right fit for our needs.

The pain of determining why DapperDox was broken and the additional

coding required to fix the problem was worth the effort, and we are

poised to integrate this process into the next set of APIs that our team

develops.

66

Documenting web APIs with the
Swagger / OpenAPI Specification
in Drupal

by Kitti Radovics

https://pronovix.com/blog/documenting-web-apis-swagger-

openapi-specification-drupal

APRIL 20, 2017

https://pronovix.com/blog/documenting-web-apis-swagger-openapi-specification-drupal
https://pronovix.com/blog/documenting-web-apis-swagger-openapi-specification-drupal
https://pronovix.com/

67

As part of our work to make Drupal 8 the leading CMS for developer

portals, we are implementing a mechanism to import the OpenAPI

(formerly known as Swagger) specification format. This is a crucial

feature not only for dedicated developer portals, but also for all Drupal

sites that are exposing an API. Now that it has become much easier to

create a RESTful API service in Drupal 8, the next step is to make it more

straightforward to create its API reference documentation. That is why

we think our work will be useful for site builders, and not just for technical

writers and API product owners.

Swagger is a REST API documentation tool, it provides a specification

language for describing the APIs and also a set of support tools. One of

those tools is Swagger UI, which generates an appealing and readable

layout for API endpoints and methods. The Drupal community is

considering using the Swagger specification to document Drupal 8 core

web services, and Swagger tool adaptations can be found in several

contributed modules. In this article we will introduce some of these

modules and explain how we want to go beyond the shallow integration

that most of them have done, to take full advantage of Drupal’s

architecture. But before diving into the technical details, we want to list

the features that we seek in the ultimate API reference CMS.

6 features that make the difference
between a good and a great API
reference system

The following are 6 technical developer portal features that customers

have requested from us in the past 2 years working with Apigee’s

developer portal. They provide functionality that go beyond what most

API management platforms provide.

This feature list is based on our investigations of existing developer sites,

our practical experience from creating developer portals and architecture

workshops we’ve held.

https://www.drupal.org/node/1925618

68

1. Storing multiple API versions: versioning

As API services can have multiple supported versions (e.g. v1, v2) in

parallel, a Developer Portal should provide a clear user experience that

gives visitors the option to choose which version they would like to read

about (but still default to the latest supported stable one).

2. Track changes in the documentation of each API
version: revisioning

Most developer portal platforms rebuild the documentation as part of

an automated build process, Drupal’s revisioning system allows editors

and site maintainers to make and track changes in specific versions of

the API documentation. While this is less important for the developers

that use the documentation, it is an editorial feature that can be useful for

technical writers and site owners.

3. Possibility to attach conceptual content to the API
reference

API references are very technical and factual. Sometimes developers

need more verbose documentation that provides a longer explanation of

the context an API operates in. That is why, several of our customers have

asked us to add conceptual documentation to their imported content -

about domain language, underlying architecture, data models, or code

samples that surround an API call.

4. Access control for individual API methods

In order to restrict the visibility of certain API methods (e.g. for partner

APIs), a Developer Portal must allow site maintainers to set granular

access permissions/restrictions for specific versions, endpoints or other

69

parts of the documentation.

5. Trying out API calls on the Developer Portal’s UI

Integrating a system with an API service can be accelerated by a Try it out

feature, that helps developers to decide which API endpoint with what

parameters to use in order to get the expected result.

6. Importing reference documentation from a version
control system

Recently technical writers have also started using the online collaboration

and versioning tools that developers work with. Documentation is now

often committed into code repositories, especially when developers

contribute to the writing process. One key problem with this approach

is that, apart from the API reference documentation where most teams

use the Swagger specification, there is no obvious standard to store

the content and layout of documentation. We’ve been working with

markdown topics, and manifest files to allow technical writers to store

conceptual documentation and their navigation structure (what we

used to organize in a book hierarchy in Drupal) separate from the API

specification. This way all the documentation can be stored in the version

control system (e.g. a GitHub or GitLab repository).

Existing Swagger modules in Drupal

The Swagger API documentation toolset covers the entire publishing

process: building (Swagger Codegen), documenting, and visualizing

(Swagger Editor, Swagger UI). Existing Drupal modules typically focus on

the building and visualization steps.

As usual Drupal.org has some modules that seem to be abandoned, but

there are two Swagger docs related modules that have been maintained

70

in the past year. One is the Swagger UI Field Formatter module, it renders

fields with valid Swagger source file using the Swagger UI tool. The other

is Swagger php module (sandbox only), it can generate JSON formatted

Swagger code based on annotations and it can render that code using

the Swagger UI.

Both of these modules use the Swagger UI project to generate a human

readable output from the specification. Swagger UI only needs a valid

source file to generate the output and the ‘Try it out’ section (for sending

requests to the endpoints); it is useful if you only need to publish the

content, but it has its limitations.

The problem we see with this solution and most other API documentation

tools is that API providers usually need access control, search, and

conceptual documentation for their API descriptions. These functions

demand a different approach.

Don’t just show it, integrate it!

After careful evaluation, we came to the conclusion that the currently

existing Swagger tools can’t support the 6 advanced API documentation

features our customers request from us. To make the API documentations

fieldable, revisionable and to be able to apply custom access control

on all components of them in Drupal, a more robust API integration is

needed. No open-source module is available for Drupal 8 that does this,

so we decided to make it a key contribution we would work on with our

team.

Since there are other specification languages (such as RAML or I/O Docs)

that are widely used and that store similar information as the OpenAPI

format, we take great care to make sure that our architecture would be

extendable and reusable.

https://www.drupal.org/project/swagger_ui_formatter
https://www.drupal.org/sandbox/davidlfg/2851342

71

Mapping Swagger objects into Drupal
data types

To get a flexible system that can be extended and altered with proper

Drupal 8 solutions, we designed custom Drupal 8 entities and field types

for every piece of a Swagger source file. The first step was to observe

the individual Swagger specification elements and to decide the most

suitable Drupal 8 data types for storing them.

We just finished the planning phase of the entity architecture, the overall

structure won’t change much, but there might be some small changes

during the implementation period.

The below image describes a small part of the planned entity

architecture. We defined a vendor independent API documentation as

a content entity (basically the root entity) which might have bundles,

providing the ability to extend the base system with vendor specific

formats other than Swagger (e.g. I/O Docs or Raml). Based on this

concept, each specification language format makes a new bundle with

vendor specific fields. By default the Swagger 2.0 specification format

bundle is provided. Each piece of content in a bundle represents a

different API version, so multiple versions (e.g. v1, v2) can be made

available in parallel on the Developer Portal (feature1).

72

All of the documentation components are tied to the properties or

references of an API documentation entity. For example API endpoints

form another content entity type, which can get referenced from the root

(API documentation) entity. Moreover, as we are planning to use fieldable

entities, any additional information can be attached to them easily

(feature 3).

Thanks to the OOP nature of Drupal 8, reusable properties and methods

can be attached to entity classes through traits. For example, base field

definitions of the consumes and the produces specification properties

can be defined in traits and used in multiple entities, as they can be

attached to the API documentation entity or to an API method/operation

(overriding the default global settings of these properties). The consumes

and the produces properties in the Swagger source are technically MIME

types (such as application/json), so they can be collected into a

vocabulary as taxonomy terms.

Thinking in traits will also enable us to extend the default API specification

with custom properties (e.g. extend Swagger specification objects with

‘x-’ properties). Code snippets could for example be included for different

http://swagger.io/specification/#vendorExtensions

73

programming languages (such as Java, PHP, Python), these might help

the readers to understand the API reference.

With the above architecture we can map specification languages into

a Drupal entity system where basic revisioning is supported by default

(feature 2). Although custom access control can also be added to any

type of entity and its fields (feature 4), it’s not as powerful as Drupal’s

node access control system. There is already a Drupal core issue that

tries to expand the node access grants system to a generic entity grants

system, and we are trying to contribute to it while working on our Drupal

Developer Portal.

Importing the data into the Drupal
system

For the import process we leverage Drupal 8’s Migrate API to import

any type of API specification formats to our custom entities and to store

them in a unified way. Source files can be either uploaded in the UI or

imported from a Github repository (feature 6) through a documentation

importer that we are building to support editorial workflows that rely on

code repositories and that automatically publish to Drupal as part of a

continuous integration process.

If you are interested in our GitHub importer and Migrate processing

solution, join our Developer Portal mailing list to receive notifications

about blog posts on the subject.

Why Drupal?

We chose Drupal 8 as the framework for our Developer Portal, because

it already had a large number of features that our customers need. With

a 10 year long history in Drupal, we are obviously somewhat biased, but

https://www.drupal.org/node/777578
https://bit.ly/devportals

74

even if we disregard our prior expertise, we believe that Drupal is one of

the best CMSs for building documentation and developer portals.

That is why we decided to extend the existing solutions, with a sufficiently

complex system that would enable us to address all the needs our

customers have. Some of our code is still in stealth mode, the developer

portal market is a relatively small niche, and we need to make sure we

can find a sustainable way to give back to the Drupal community. That is

why in parallel to our development, we are working on a new business

model for our distribution to make sure we will be able to continue

sharing our work with the wider community. We are committed to the

open source community and credo, but we want to prevent some of the

failures we have seen with previous Drupal distributions, more about that

in a later article...

75

Web APIs in Drupal: Success Takes
More than an Endpoint

by Dezső Biczó

https://pronovix.com/blog/web-apis-drupal-success-takes-more-

endpoint

MARCH 23, 2017

https://pronovix.com/blog/web-apis-drupal-success-takes-more-endpoint
https://pronovix.com/blog/web-apis-drupal-success-takes-more-endpoint
https://pronovix.com/

76

Introduction

Web APIs are not just useful when making headless sites in Drupal:

large Drupal sites often hold valuable information that could also be

useful outside the site’s context. Media companies might want to expose

historical media content, community sites could show data about their

community activities, e-commerce sites tend to open an API for their

affiliates and partners.

While it is possible to use Drupal 7 and Drupal 8 as an API backend, a lot

of functionalities that describe a mature API service do not come out of

the box. In this article we will explain what key concepts you have to keep

in mind when designing an API service, why they are important and how

APIgee Edge can make it easier to build a full-featured API webservice in

Drupal successfully.

Designing APIs: the API first strategy

In a large part of the software development industry, API first thinking

is replacing a user interface design approach. API first design is about

planning and documenting your API before it would be implemented

in code. If you set up your backend service this way, you can use it with

different clients regardless of the way they were implemented. API first

strategy allows you to diversify user interfaces: UI developers can work

without knowing how your backend service works.

Building good backend services is not easy, there are plenty of pitfalls on

the road and most of them only reveal themselves during development.

Your responsibilities as a service provider grow with the number of clients:

maintaining the security of your services (especially if you are providing

paid services),

handling compatibility problems between client apps and different app

versions,

ensuring that your services are able to handle unexpected loads.

77

You can’t handle all of these tasks without monitoring the services.

Especially for monetization, monitoring is crucial.

Features to keep in mind for building
good API backend services

Security

Security is one of the most important trust signals of a mature API. A

multi-layered protection system should be able to hide your non-public

services from the public, handle the authorization processes, and protect

the original resources from attackers.

Compatibility

Compatibility issues are the nightmares of service providers: versioning

your APIs is your first step to harmony.

Scalability

Successful services have to handle an enormous number of requests

every second and your services have to scale with the number of your

new clients. Sometimes moving your backend to better hardware does

not help, because the root of the problem is in the initial architectural

decisions or implementations.

Monitoring

You need exact analytics about the usage of your API: it is indispensable

for monetization purposes, plus you could use analytics data to improve

your service and to understand your users’ behavior.

78

Documentation

Good documentation is an essential part of the API service, as this is the

first line of support for developers trying to understand and learn how to

use the API. Developer portals often have different kinds and levels of

supporting material from getting started pages to various guides, case

studies, playbooks, and tutorials.

Monetization

You will need an authorization and monitoring system to efficiently track

and bill customers for using your services. Exposing different resources

of your APIs individually or grouped, and setting up usage limits based on

these “API products” can be a time consuming task.

Companies specialized in API
management solutions

You can choose from many API management technologies to build an

API service, but each technology stack has its own limitations. Some

companies have specialized to help you solve (a part of) the problems

that might occur. Our non-exhaustive list of such companies as an

example (company descriptions are from Crunchbase):

• 3scale’s API management platform empowers API providers to

easily package, distribute, manage and monetize APIs.

• Apiphany provides API management and delivery solutions that

enable organizations to leverage the mobile, social and app

economy.

• Layer 7 Technologies provides security and management

products for API-driven integrations spanning the extended hybrid

enterprise.

https://www.crunchbase.com/
https://www.3scale.net/
https://www.crunchbase.com/organization/apiphany
http://www.layer7tech.com/main/

79

• MuleSoft provides integration software for connecting

applications, data and devices. MuleSoft’s software platform

enables organizations to build application networks using APIs.

• Mashery is a TIBCO company providing API management services

that enable companies to leverage web services as a distribution

channel.

• StrikeIron offers a cloud-based data quality suite offering web-

based infrastructure to deliver business data to internet-connected

systems.

• Apigee is the leading provider of API technology and services for

enterprises and developers.

The rest of this article will focus on Apigee (recently acquired by Google).

Disclaimer: Pronovix is an Apigee partner, so we are somewhat biased.

However, even if we wouldn’t be partners, we believe they are probably

the best API management service provider for Drupal projects. They are

not only a market leader in the space, they have also invested in a Drupal

integration: Apigee Edge.

Apigee Edge: a Drupal integration for API
services

https://www.mulesoft.com/
http://www.mashery.com/
https://www.informatica.com/strikeiron.html
http://apigee.com/

80

Built in JAVA, Apigee Edge is able to replace or enhance complicated

parts of your services. API proxies will protect your services from direct

customer access (as they guard the backend code), and add the above

mentioned 6 key features to your APIs. Apigee Edge manages these

features in a specific way.

Policies

Apigee Edge enables you to control the behavior of your APIs (without

writing a single line of code) via policies. A policy is similar to a module

that implements a specific, limited function that is part of the proxy

request/response flow. You can add various types of management

features to an API by using policies.

Traffic management policies

With cache policies you can set up traffic quotas and concurrent rate

limits on your API proxies.

Mediation policies

Mediation policies let you do custom validation and send back custom

messages and alerts to your clients, independently from your backend

services. Moreover, you do not need to implement separate xml

serialization in your services to accept requests or send responses in

XML, because the JSON to XML and XML to JSON policies are capable to

do automatic conversions between these formats.

Security policies

Security policies give access control management to your APIs with

different types of authorization methods and protection features.

81

Extension policies

If you haven’t found an existing policy for a special task, you can

implement your own policy in Java, Javascript or Python with the help of

the Extension policies, which also contain policies for external logging

and statistics collecting.

Developer portals

A great developer experience is crucial for API adoption. Apigee

Edge has a developer portal solution that is built in Drupal 7 with API

documentation, forums and blog posts that come out of the box. API

developer portals done well are your power tools to help the adoption

of your API and build strong communities. Apigee’s dev portals could

be hosted either on cloud or on-premises with Apigee Edge for Private

Cloud.

We hope this introduction gave you some insight into building high-

performance API web services.

Disclaimer: When we specialised Pronovix in API documentation and

developer portals we started a partnership with Apigee, and we do extensive

work customising the Apigee developer portal.

82

7 Trust Signals That Help an API
Succeed

by Kristof Van Tomme

https://pronovix.com/blog/7-trust-signals-help-api-succeed-developer-

portal-strategy-part-1

JANUARY 25, 2017

https://pronovix.com/blog/7-trust-signals-help-api-succeed-developer-portal-strategy-part-1
https://pronovix.com/blog/7-trust-signals-help-api-succeed-developer-portal-strategy-part-1
https://pronovix.com/

83

Developer portals are important for your API’s adoption and support. They

are also a trust signal: a well designed and actively maintained developer

portal shows that an organization is investing in its APIs. It helps convince

developers that they can rely on them.

This matters: many developers have in their career dealt with the

fallout of a deprecated or suddenly discontinued API, especially more

experienced developers will be cautious when introducing dependencies.

API trust signals are therefore crucial when you run an API program that

primarily targets developers outside of your business, but they can also

play a role for internal APIs in large organizations where business unit

politics can result in information asymmetries.

In this article I’ll zoom in on 7 trust signals that I think are important, all of

them - except maybe for nr. 3, API quality - can be asserted through an

API’s developer portal.

1. Business model

In 2014, Linkedin changed their terms of service. Overnight the majority

of CRM projects found themselves shut out of Linkedin’s API program.

Linkedin had decided to limit API access so that only Salesforce and

Microsoft Dynamics would be able to use it to augment their CRM

products. This was a disaster for several smaller CRM solutions that had

made their integration with Linkedin a key strategic differentiator.

https://www.fullcontact.com/blog/linkedin-state-of-crm-2014/
https://www.fullcontact.com/blog/linkedin-state-of-crm-2014/

84

Because of stories like this, developers have become more careful about

the APIs they invest their time in. It is extremely important to be upfront

about the business model of your API. If your API is free, you need to

explain why and how you will keep on supporting it. If you have a paying

API you need to make it clear that your plans are sustainable, and that you

won’t suddenly change the conditions for your customers and partners.

Keen IO’s Business Models (screenshot January 2017)

Twilio’s personalized support models

85

2. Partner policy

Related to point 1, it is important to have a clear partner policy. Successful

APIs allow organizations to turn their services into a platform on top of

which other businesses can innovate. In their book ”Platform Revolution”

the authors describe why platforms need to absorb popular features

originally developed by their partner ecosystem back into their core

product. If they don’t do so, they risk being replaced by a more popular

partner who could capture the market with a better default core product.

In the book, the authors, also describe that this needs to be done

carefully, to make it clear that partners will be able to profit for at least

some time, before the platform absorbs those features. If it is your

ambition to build a large sustainable ecosystem around your business to

make your product more robust and innovative, it is important to consider

a platform strategy as part of your your partner policy.

3. API quality

The quality of your API will of course be one of the most important trust

signals for developers once they start working on their integration. A

A clear terms of use for an API prevents misunderstandings and abuse. But caution is needed, if the
terms are too strict or avoid a clear commitment this might create suspicion and undermine trust.

http://platformrevolution.com/

86

badly designed API will not only reduce the developer experience, it will

also raise doubts about your API team, their resources, and commitment.

Joshua Tauberer wrote a blog post that lists out a number of qualities that

can improve your API on his blog. Another great resource is 5 Features of

a Good API Architecture, a talk Rob Allen gave at OSCON.

“A good API is secure” (Rob Allen) - Example of a security section
(Keen IO docs)

Example of listing and describing error messages to speed up the developer’s job
(Stripe)

https://razor.occams.info/blog/2014/02/10/what-makes-a-good-api/
https://razor.occams.info/blog/2014/02/10/what-makes-a-good-api/
http://cdn.oreillystatic.com/en/assets/1/event/164/Five%20features%20of%20a%20good%20API%20architecture%20Presentation.pdf
http://cdn.oreillystatic.com/en/assets/1/event/164/Five%20features%20of%20a%20good%20API%20architecture%20Presentation.pdf
https://twitter.com/akrabat

87

4. API uptime status

Another way to build trust is to provide a page on your portal where

developers can check the current API status of the system they’re

working with.

Bonus points if you include a sign up possibility to receive updates

and a diary of past incidents. Twilio, Dropbox and Vimeo use Atlassian’s

StatusPage product to do so.
Including a general API status overview helps assert the quality of an API product

(Twilio)

API status system metrics (Vimeo)

https://www.statuspage.io/
https://www.statuspage.io/

88

5. Versioning policy

The long term stability of your API will depend on a proper versioning

strategy. Having a versioning policy in place from the start will show that

you are planning for the future and that there will be further investments

in your API. Most web APIs nowadays use URL versioning, but there are

arguments against this approach. To learn more about versioning options,

read Troy Hunt’s blogpost on the subject, he also has a discussion about

URL versioning in his comments, so don’t skip them.

6. Documentation

Even when developers see the importance of documentation and/or

like writing docs, they often don’t get enough time to do so. The results

are unmistakable, according to Stackoverflow’s 2016 survey, “poor

documentation” was the 2nd most important challenge that 34,7% of

developers faced at work just 0.2% after “unrealistic expectations”.

Documentation also functions as a quality signal that shows the level

of investment you have made in the developer experience of your API.

Do you have reference documentation for your API? Is it interactive? Do

you use one of the REST API documentation standards? Did you create

a thesaurus of the domain language, to explain terms that developers,

new to your industry, might not be familiar with? Do you have tutorials

Example of a docs page with buttons to switch API versions
(CenturyLink)

https://www.troyhunt.com/your-api-versioning-is-wrong-which-is/
https://www.troyhunt.com/your-api-versioning-is-wrong-which-is/
http://stackoverflow.com/research/developer-survey-2016

89

and getting started documentation? A lot of API teams mistakenly believe

that reference documentation is the only type of documentation an API

needs. To learn more about the different documentation components

check out Kathleen’s blogpost series about documentation patterns on

developer portals or subscribe to our newsletter to get our white paper

about developer portal components:

7. Developer portal production quality

Last but not least, don’t underestimate the importance of your developer

portal’s production quality. The design and completeness of your portal

will give an impression about the trustworthiness of your API. Developers

might not consciously think about this, but a good developer portal can

be a signal that you are not cutting corners, and that you are committed

to your API program. Regular updates to your portal, through blog posts,

event postings, and documentation updates show that you are (still)

investing in your APIs.

Twilio’s documentation overview page, including
Quickstarts, Guides, Tutorials, API reference and SDKs sections

https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
http://eepurl.com/bF0ztz

90

Keen IO’s community portal provides developers with several
possibilities to communicate and meet

CenturyLink’s overview page for developers includes links to
documentation sections and to their blog

91

The 8 Stakeholders of Developer
Portals

by Kristof Van Tomme

https://pronovix.com/blog/8-stakeholders-developer-portals-

developer-portal-strategy-part-2

APRIL 6, 2017

https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2
https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2
https://pronovix.com/

92

Different stakeholders interact with a developer portal throughout an

API’s lifecycle. In this article I’ll list 8 stakeholders and explain what they

need to do their jobs.

1. API developers

Developer teams that build APIs often also end up designing its

developer portals. This is often done almost as an afterthought without

properly considering all the stakeholders that will need to interact with a

developer portal.

Developers typically care most about the ability to deploy documentation

automatically as part of the development process, and might forget that

other, less technically people, will also need to interact with the site.

From a continuous integration perspective it very attractive to build a

static site as part of the deployment infrastructure. But from the moment

that portal stakeholders will demand slightly more complex requirements

(like access restriction for your docs or conditional text for code samples),

your API developers will spend a lot of time, over and over again, building

custom solutions for a problem space they don’t fully understand.

Company developers will learn how to balance the needs of all the

stakeholders with a developer portal that is usable and that serves your

business needs, but only after going through a time-consuming learning

process that can introduce a lot of technical debt.

To speed up the procedure, we believe it is better to work with a

dedicated team member, or - shameless plug - a developer portal

specialist like Pronovix, especially when your API team doesn’t have

sufficient web and documentation tooling experience.

93

2. API consumers (developers of the API
client and end-consumers)

APIs have two types of customers:

• the developers that build on top of an API,

• the actual API end-consumers that use the service that embeds

the API.

Both types of customers need to get value out of your API product. But

to get a chance to offer that value as a technology company, developer

experience is of primary importance: developers often decide what

API they will use, so they act as a decision gate: if you fail to offer them

a good experience, they will often not use your API, regardless of its

downstream value for end-consumers. End-consumers are typically one

step removed from the decision process and do not directly influence

API selection. They might even end up paying a premium because their

interests are not perfectly aligned with the interests of developers.

This agency problem explains why it is dangerous for technology

companies to ignore the developer experience of their developer portals.

3. Product owners

APIs should be treated as products, not as projects. Projects are too

ephemeral to provide the continuity API consumers need. Product owners

are the stakeholders that manage an API product.

Ideally, product owners can use developer portals to:

• communicate and get feedback about the product road map,

• gather new ideas for product features,

• ideate new features,

• get feedback about the popularity and performance of current

features (e.g. via voting or usage statistics),

• build a relationship with the user community and test new ideas,

https://en.wikipedia.org/wiki/Principal%E2%80%93agent_problem

94

e.g. via forums that can provide information about users.

4. Marketing

Apigee, our partner, published a white paper about developers hating

marketing. Yes, developers prefer to see code instead of marketing

copy, but it is also important to keep in mind that your developer portal

contributes to your marketing objectives.

Marketeers need a developer portal to:

• perform well on search engines, so that new leads will find your

API,

• have a section where decision makers can learn about the benefits

and features of your API,

• be an effective conversion tool, that helps to qualify leads,

• measure the effectiveness of the API marketing program.

We believe that it is manipulative marketing that developers really hate.

Marketing that tries to directly influence emotions with little substance or

evidence about the actual benefits of a product. Like any other human,

developers sometimes need help to make decisions. If you have a great

product, and if your marketing content is factual, developers might even

welcome that marketing and help spread it. But since the content needs

to be evidence based, this type of marketing starts to look a lot like well

executed documentation, with adaptive content that opens with claims

that are backed by layers of increasing detail.

5. Sales

Recent innovations in lead generation tools and marketing automation

have blurred the lines between marketing and sales. This trend goes

https://apigee.com/about/resources/ebooks/developers-hate-marketing
https://apigee.com/about/resources/ebooks/developers-hate-marketing

95

hand in hand with an increasing number of automated processes that are

triggered when a potential customer interacts with marketing assets. The

developer portal, as the digital gateway to your API, plays an important

role in facilitating these new hybrid processes.

A company’s business model influences the types of sales functions you

need in your developer portal. Developers act as both implementers and

decision makers and will play an intermediary role between your business

and your API end consumers: a developer portal, therefore, often will

have business development, partner recruitment and sales functions.

6. Developer evangelists

As Christian Heilmann explains in his book on Developer evangelism:

“Developer Evangelism is a new kind of role in IT companies. A developer

evangelist is a spokesperson, mediator and translator between a

company and both its technical staff and outside developers”.

Developer evangelists (or developer advocates) help a company to

bridge the gap between its developer customers (developers of the API

client) and its sales, marketing, and product development departments.

This new role is indispensable indeed: developers require more

authenticity and responsiveness than the sales and marketing

departments traditionally exhibit. Developer evangelists perform a range

of jobs to help you grow your API. In a discussion at CLSx London, we

identified a number of jobs a developer evangelist performs:

• community manager

• writer

• engineer

• teacher

• speaker

• event manager

http://developer-evangelism.com/
http://clsxeurope.com/

96

The actual roles that an individual developer evangelist will take on

depend on the size of your API team (think unicorn magician on a collision

course with burn-out). It is probably healthier to split up tasks between

several specialists.

One of my key learnings from DevRelCon 2015 was that that developer

evangelists typically will report to a product, sales, or marketing

department. And that the type of department they report to influences

what jobs and what specific tasks they prioritise.

7. Support

Maybe the most important role of a developer portal is self-service

support. Without proper documentation, companies will spend an

enormous amount of time and money on workshops and trainings.

A portal could opt for various support resources:

• Staffed support options: e.g. a FAQ page, knowledge base page,

or support pages (like a contact form or a live chat window),

• Peer-to-peer support: e.g. community sections, forums, and third-

party community pages.

The formula for combining several support options depends on your

primary personas, your business model and the maturity of your API

community.

Developer evangelists balance three interests.

https://london-2015.devrel.net/

97

Investing in a support team is expensive, but the results of their

interactions with various user groups are indispensable. The support

team:

• provides feedback on the current documentation,

• adds new value to the current documentation in specific problem

areas.

In “FAQs, Forums and Other Support Resources” we analyzed the

characteristics of support options and looked at how they involve users to

develop information about the problem areas in an API’s use.
Read more

8. Documentarian

Documentarians, or technical writers, write product specific content, like

tutorials, guides, API reference, and onboarding information for an API.

While they might have a technical background, they are often not

practicing developers. In other words: they need a portal that allows

them to manipulate content without necessarily having to work with the

command line or to consult with a developer (we already mentioned the

flipside of static developer portals, where changing requirements always

comes down to developer work).

Documentarians need a portal setup that:

• allows them to stage content and efficiently test the

documentation,

• can publish the documentation format their team has chosen (e.g.

Markdown, DITA, Restructured text, Docbook, or Asciidoc),

• integrates with the authoring tools that they use,

• provides them with an accessible publishing tool chain that is easy

to operate,

https://pronovix.com/blog/developer-portal-components-part-5-faqs-forums-and-other-support-resources

98

• provides an efficient writing environment that doesn’t require

elaborate initiation processes to start writing, so that it becomes

easy for people to contribute documentation, even if they are

not full time involved in a specific project (e.g. I have heard

stories about writing environments that require an elaborate

synchronisation process before each writing session),

• provides tools that make it easier to ensure quality.

Ideally, the support team co-operates with the documentarians and
product developers to optimise the documentation on a developer portal.

99

Upstream Developer Experience:
a Role for Developer Portals in
Enterprise API Design

by Kristof Van Tomme

https://pronovix.com/blog/upstream-developer-experience-role-

developer-portals-enterprise-api-design-developer-portal

MAY 10, 2017

https://pronovix.com/blog/upstream-developer-experience-role-developer-portals-enterprise-api-design-developer-portal
https://pronovix.com/blog/upstream-developer-experience-role-developer-portals-enterprise-api-design-developer-portal
https://pronovix.com/

100

Most of the time when we talk about developer experience, we mean

downstream DX, the experience of developers that implement APIs. But

what about the developers that create APIs?

In a previous article we wrote about the 8 stakeholders of developer

portals, we argued that while the developers that use APIs are important,

we shouldn’t forget about the experience of other stakeholders of a

developer portal. In this article I’ll explore the experience of one of these

audiences - the API developers - and explain what upstream DX is, when

it matters, and how you can use a developer portal to improve it.

Gamifying digital transformation
initiatives

Most organizations never consciously address the experience of the

developers that create APIs, upstream DX. This is only logical, upstream

DX doesn’t always need attention: a team that is dedicated to APIs will

overcome friction on its own terms. In large enterprise organizations,

however, where API development might be a secondary priority of a

team, upstream DX can make the difference between a failed and a

successful digital transformation initiative.

A few months ago while I was talking with an enterprise architect

about the developer portal he was planning, I realized how different his

requirements were from the more traditional outward facing API initiatives

that we build most of our portals for. In his company the API initiative was

a change project. He needed to convince people about the importance

of APIs, explain how it is best to create them, and set out an evaluation

process that could help his company to measure the progress in different

business units.

We started talking about a workflow tool that would make it easy

for employees from all over the organization to submit potential API

https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2
https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2

101

resources before the actual APIs are built. Developers could then be

guided through a set of consecutive steps that help them to develop

quality APIs. I explained how a dashboard with an overview of the

submitted resources, with a rating that indicates the progress status

along a series of workflow steps, would then allow managers to monitor

and compare progress between business units.

I believe that such a workflow tool, combined with a well defined process,

can reduce the friction of a change initiative. Instead of trying to do

everything at once, the most valuable resources can be turned into APIs

through a step-by-step process with clear and tangible tasks. Instead of

a dedicated API team, the API initiative can become a distributed process

that uses feedback from your developer community. A conversation

between API creators and consumers prioritises the development of APIs

for the most important resources. Gamification (e.g. a dashboard with a

5-star rating), transparency and simplification can be used to increase the

likelihood of success of a distributed effort to build quality APIs.

If your objective is to transform your business, and to make APIs

an integral part of how your organization works (the way Amazon

transformed its business), then you need to distribute API ownership

throughout your organization. A central API team is great to prove the

business value of APIs, but if you build APIs as a one off project instead of

a continuously developed product, your APIs will soon fall in disrepair.

That is why I think central API teams should transition from an “API pilot

team modus” to an expertise center that supports developers throughout

the organization. Sharing scarce skill sets like API documentation

expertise and developer experience best practices. I think this is the best

way to transition an organization into the API-first mindset, necessary to

capture the value of internal agility.

http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/

102

Upstream DX: the hidden developer
journey

But what are the steps that need to be made to design an API, and how

can we remove friction from the process?

1. Engage

Digital transformation initiatives in enterprise organisations often meet

inertia or outright resistance. Employees might not have the time or

appetite to participate in yet another change program of which they

don’t understand the value. That is why a digital transformation program

will first need to convince developers about the value of web APIs to be

successful. The first job of an internal developer portal is to become an

education and engagement tool.

• How can you convince people to put their efforts into an API

program?

• How can you engage developers?

• Can you implement a reward model, or gamification system that

will help them to prioritise the initiative?

2. Catalog

In large organizations it can be hard to discover reusable assets from

different business units. This creates waste: different teams in the same

organization might implement parallel solutions for similar problems.

This is one of the most important reasons why many businesses start an

API program, they want to create standardized interfaces between their

departments and thus prevent the creation of one-off integrations. These

standard interfaces can then later evolve into assets that are valuable in

their own right, to facilitate innovation or to build new products.

103

• How do business units interact, can they be incentivized to interact

through APIs?

• Do you already have a catalogue of digital assets and services that

could be turned into APIs?

3. Design

API specification languages like Open API/Swagger, RAML, and

API Blueprint make it possible to create a “contract” before an API is

implemented. This is a best practice, as it makes sure that an API will

meet the requirements of both the API providers and consumers. A

developer portal could make it easier for API producers to communicate

with the consumers of their APIs. Once announced, potential customers

could express their interest in an API resource. The resulting dialogue

between the API producers and consumers can then help prioritize what

APIs get implemented first.

• Does your organization have an API design guide?

• Can you formalize a design process that involves both API creators

and consumers?

• Do you already have communication tools that can be used to

facilitate the design discussions?

4. Implement

While it is often straightforward to create a web API, it can be a lot of work

to implement all the features needed for a mature API. Metrics, scalability,

and especially security can add a lot of complexity to an API program. API

management gateways solve these problems, and keep on innovating

on the API management layer (e.g. Apigee’s machine learning solution

Apigee Sense that helps API teams recognize security threats).

Remove as much friction as possible from the implementation process.

Ideally an organization will provide an API management layer, so that API

developers don’t need to address these individually. A central team can

104

provide resources, tools and experts that can help accelerate the API

development process.

• Provide tools to develop APIs.

• Make it easy to submit and update API documentation (e.g. through

an integration with your code repository).

• Add documentation that explains best practices.

5. QA and Publish

Developer portals can play a role in the API quality assurance and

publication process as a workflow and governance tool that you can use

to define standards and implement control mechanisms.

In large organizations gamification features on a developer portal could

provide an objective and transparent metric for API quality.

• Award quality indicators for each step completed towards a

desired outcome (e.g. you get your 5th star when the onboarding

documentation for X commonly used platforms is available on the

developer portal).

• Create a “dashboard” for the organization that gives management

insight into the health of the API program in their division and

across the organization.

6. Feedback and support

As a final step it is important to give developers feedback about the

importance of their work. Metrics should be available in the developer

portal, with dashboards about the usage of individual APIs. Notifications

about milestones in the usage of API resources can help to keep

developers engaged in the API initiative. Bringing them back to the

developer portal to invest additional time in improvements of their most

used APIs. A centralized support team can act as a first line of defense

that solves the most common problems, so that API customers don’t

105

need to disturb the developers of an API.

• How will you measure API usage?

• What is your support plan?

• How will you keep developers engaged?

Conclusion

A small API team doesn’t need to worry too much about their upstream

DX. That is why API teams tend to forget about the upstream developer

journey: they are already familiar with the API development workflow and

have less need for tools or interfaces that facilitate the process. But in

larger companies (e.g. if your business has business units or other types

of information silos), improvements in the upstream developer journey

can help drive engagement and adoption.

If you liked these articles, check out our series about API strategies.

https://pronovix.com/blog/developer-portal-strategy-models-and-frameworks-help-you-build-better-developer-portals

106

The Documentation Maturity Model

by Cristiano Betta

https://betta.io/blog/2017/05/16/api-documentation-maturity-

model/

MAY 16, 2017

https://betta.io/blog/2017/05/16/api-documentation-maturity-model/
https://betta.io/blog/2017/05/16/api-documentation-maturity-model/

107

I’ve recently been introduced to the Richardson Maturity Model, a simple

idea that breaks down the principal elements of a REST API into 3 levels:

Resources, HTTP Verbs, and Hypermedia Controls.

These 3 levels allow for an easy way to understand the maturity of

an API, but I’m more interested in that it also provides a clear path on

how to mature an API. As every level is building on top of the previous

level, maturing an API can be done in a level-by-level, isolated, and

manageable way.

So, this got me thinking. Is there a similar model we could apply to the

developer experience of most API documentation?

Level 0 - Minimum Viable Docs

I know I said we have 3 levels, but the first level is to have some docs in

the first place. Often this is written by some of the first developers on the

project, often written for themselves or their first client.

The documentation at this level can be documentation of any type:

reference, tutorial, or other. They will be mixed, for example providing

you with a guide on how to get started, followed by the reference

documentation on the same page.

Often, this level of documentation exists out of mostly reference

documentation, focussing on providing a single source of truth and only

considering the educational aspect as a secondary objective.

Level 1 - Documentation Types
Reduce complexity by using divide and conquer

At the next level the documentation is fleshed out into separate

documentation types. Often this will fall into some variation of Reference,

Get Started Guides, Tutorials, Guides, and Exploration documentation.

https://martinfowler.com/articles/richardsonMaturityModel.html
https://betta.io/blog/2017/03/12/defining-the-developer-journey/

108

By providing a better information architecture in the documentation it

becomes easier for developers to find the right documentation for them.

As I pointed out in a previous post, the developer journey consists of a

few different steps and allowing developers to find the right step for them

is essential to a great experience.

In essence, level 1 documentation reduces complexity by dividing the

documentation into various documentation types. With this in place each

documentation type can own the educational goals of that part of the

developer experience.

Level 2 - API Building Blocks
Remove unnecessary variation by increasing
reusability

At the next level, the documentation is standardised to provide well

defined building blocks for the product. Often this involve splitting

previously large parts of the documentation into smaller, more focussed

parts which will will have their own standardised, human-readable URLs.

Deciding what granularity is appropriate here is probably the hardest part

and is very dependent on the product and its core use cases.

How Virgil Security, Braintree, and Twilio divide their documentation into different types.

https://developer.virgilsecurity.com/
http://developer.braintreepayments.com/
http://twilio.com/docs

109

Not all work done at this level is visible to outsiders. Many companies put

a lot of effort into standardising code samples and URL schemes so they

can be re-used across the documentation and even be integrated into

the onboarding experience. The benefit of this is that common mistakes

can be easily prevented.

In essence, level 2 documentation removes unnecessary variation by

increasing reusability both for external developers and internal copy

writers. A strategy is put in place to ensure every part of the product

is documented to the same standard. By creating a clear structure

and overview of the building blocks that make up the product it can

be ensured that each one of these blocks is documented to the same

standard.

Level 3 - Cross-References
Introduce discoverabilty across building blocks and
documentation types

In the final level we can use the increased structure and reusability of

the documentation to turn a strict hierarchy into a fully functional web of

documentation. Before this level, the documentation already supported

linear navigation through well defined paths.

How Twilio has split their core building blocks into unique pages.

https://twilio.com/docs

110

Now, by linking across documentation type and building blocks

exploration has been increased massively. At the one hand, providing

links that move into more/less indepth topics allow developers to find

the level of documentation that best matches their experience level.

An example of this would be to add a link on a guide to the reference

documentation of the same topic.

On the other hand, providing links that move laterally into related topics

allow developers to always be learning new concepts and ideas, as well

as providing a single source of truth for some often used building blocks.

An example here would be the installation and initialisation of an SDK;

often this is a prerequisite for most guides and tutorials. Another example

is taken straight from the Stripe documentation where the “Payment

Quick Start” directly links to both another Quick Start on “Subscriptions”,

and a guide on “Getting Paid”.

In essence, level 3 documentation introduce discoverabilty across

building blocks and documentation types by adding links to every page

that allow a developer to move from linear paths into related topics.

These related topics can be vertical moves, pointing at content covering

the same topic but at a different complexity level. Alternatively, they can

be horizontal moves that point at content covering a different topic but at

the same complexity level.

How Stripe links out to related content at the end of pretty much every page.

https://stripe.com/docs/quickstart

111

Final thoughts

Even though this is just a first draft, I think works out quite well. As Martin

Fowler pointed out the 3 levels are not just about the direct aspects of

APIs (Resources, etc) but also about the common design techniques that

are added at each level. I’ve taken those techniques and applied them to

documentation:

1. Reduce complexity by using divide and conquer

2. Remove unnecessary variation by increasing reusability

3. Introduce discoverabilty

I want to reiterate that this maturity model is not something that should

be used to judge documentation, rather more interestingly I think it can

be used to provide a clear path for improvements. As each level builds

on top of the strengths of the previous ones it can be used as a guide on

how to incrementaly improve any documentation.

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html

112

EVENTS

API The Docs, London

https://pronovix.com/api-docs-london-2017

JUNE 20, 2017

A one-day Write The Docs conference about all aspects of API

documentation. Explore latest best practices, new trends, and strategies

relevant to API documentation.

https://pronovix.com/api-docs-london-2017
https://pronovix.com/

113

• Daniele Procida: What Nobody Tells You About Documentation

• Daniel D. Beck: 410 Gone. Documenting API Deprecations and

Shutdowns

• Jessica Parsons: The Best of Both Worlds: A Git-Based CMS for

Static Sites

• Rosalie Marshall: Creating Consistent API Documentation in

Government

• Ben Hall: The Art of Documentation and Readme.md

• Jaroslav Machaň: Opening a Door to a Sleeping Castle

• Andrew Johnston: Documenting GraphQL at Shopify

• Jennifer Riggins: How Can API Documentation Become Inherently

Agile?

What Nobody Tells You About
Documentation

Daniele Procida
Community manager at Divio AG

• “If you give insufficient documentation, the world may decide that

your software is just too much trouble.”

• But there isn’t the one documentation: there are four.

• 4 types of documentation represent 4 specific purposes. Each

one has one specific job and requires a distinct mode of writing, but

there are gravitational pulls working among them.

• Tutorials are learning-oriented and provide lessons that

take the reader by the hand through a series of steps to

complete a project. Tutorials are useful when studying and

provide practical steps.

• How-to guides are problem- and goal-oriented. They

take the reader through the steps that are required to solve

https://pronovix.com/api-docs-london-2017#daniele
https://pronovix.com/api-docs-london-2017#daniel
https://pronovix.com/api-docs-london-2017#daniel
https://pronovix.com/api-docs-london-2017#jessica
https://pronovix.com/api-docs-london-2017#jessica
https://pronovix.com/api-docs-london-2017#rosalie
https://pronovix.com/api-docs-london-2017#rosalie
https://pronovix.com/api-docs-london-2017#ben
https://pronovix.com/api-docs-london-2017#jaroslav
https://pronovix.com/api-docs-london-2017#andrew
https://pronovix.com/api-docs-london-2017#jennifer
https://pronovix.com/api-docs-london-2017#jennifer
https://twitter.com/evildmp

114

a problem. How-to guides are useful when coding, they

provide practical steps.

• Reference documentation is information-oriented, it

includes technical descriptions of the machinery and how

to operate them. References are useful when coding, they

provide theoretical knowledge.

• Discussions, also known as background topics, key topics

or topic guides are understanding-oriented: they give

explanations that clarify and illustrate a particular topic.

They are useful when studying and provide theoretical

knowledge.

• The right way is the easier way, for both authors and readers. For

authors, the 4 documentation types will define what to write, how

to write it and where to put it. This distinction makes maintaining

the documentation easier, and also enables readers to use the

software more efficiently.

Daniele’s presentation

Further reading: What nobody tells you about documentation (blog post)

410 Gone: Documenting API
Deprecations and Shutdowns

Daniel D. Beck
Technical writer, https://ddbeck.com/

• Communication about how to cancel a project is under-

represented.

• As the tech writer, all your feelings about the deprecation are

reasonable. But you cannot inflict them on your team or your users.

https://www.divio.com/en/blog/documentation/
https://twitter.com/ddbeck
https://ddbeck.com/

115

• You have impact as a writer: it is important to get into the right

mindset, plan the communication ahead in order to say the right

things right.

• Do not commit to near-future events, buy as much time as

possible.

Plan:

• involve the operations and the support team,

• stop the existing outreach,

• list communication channels,

• fit everything into an overall escalation strategy,

• make a time schedule (use not-earlier-than-dates rather than

deadlines).

Let users down easy:

• be aware that you and your users might experience the shutdown

differently,

• explain what happens when and what is the user to do,

• offer alternatives, give users an exit,

• do not necessarily explain “why” the shutdown happened nor show

any hesitation. This is not the time for subtlety or being cool (even if

that is in your general styleguide),

• show gratitude.

Find Daniel’s slides and presentation

The Best of Both Worlds: A Git-Based
CMS for Static Sites

Jessica Parsons
Developer Support Engineer at Netlify

https://ddbeck.com/atd2017/
https://www.youtube.com/watch?v=OVq_km1ytYM&feature=youtu.be&list=PLCog6XCmmzvBlFf6ahWrUZtkW2mwdQxOb
https://twitter.com/verythorough

116

API documentation is necessarily a collaboration between technical writer

and developer, but merging their disparate workflows can be a challenge.

Content Management Systems (CMS) are feature-rich, widely used tools

to edit and update content without touching code. Their downside is that

the content and the development workflow are separated.

With Static Site Generators (SSG) documentarians are able to write by

following the dev workflow, e.g. storing documentation in a Git repo, using

branches for modification. Hosting is (mostly) free and the content is

separated from the tools. There are many SSGs, some made specifically

for documentation: Sphinx, MkDocs, GitBook, Slate (API docs generator).

The downsides are that content must be written in code and they are not

as full-featured as content management systems.

Netlify CMS helps bridge this gap between CMSs and SSGs, by providing

a simple UI wrapper for Git functions, with a real-time markdown preview.

Netlify works with the GitHub API, uses Markdown for content and

provides an editorial workflow.

Jessica’s slides and presentation

Creating consistent API documentation in
government

Rosalie Marshall
Technical Author at GDS

Main goal of GDS is to build government as a platform. Developers

need to be able to integrate without wasting time on deciphering poorly

written documentation. Encourage code sharing and use of open source

https://twitter.com/RosalieMarshall

117

software by providing strong documentation.

Research on API docs needs for GDS:

1. Testing with 30 technical architects and developers:

2. opinion on existing docs sites in and out of GDS

3. card sorting and diary studies on all docs they read in a week

4. Asking companies like Stripe and GoCardLess on what they did to

make their API docs a success.

Results:

Docs needs of developers:

• up to date

• right version

• searchable and scannable

• understand scope quickly

• colour-coded blocks of code

• working examples

• direct linking to parts of the docs

•

Too many user needs, no product answers them all. Decide by what they

would build for GDS inside use, iterations on their own tool.

GDS needs:

• version control

• self-hosting at gov.uk

• auto-testing of code samples

• consistent one look for all GDS docs, a tool that fits both API docs

and general manuals

• use GovSpeak, a GDS-flavoured markdown: warning callouts,

numbered lists etc.

•

MVP just out (see on GitHub), next step is to meet the tech writer user

needs not yet incorporated.

118

Further needs:
• separate product for Verify, that is not API documentation

• a slackbot for reviews

• markdown or not (new team-members joining)

• openAPI specification (ongoing)

• moving the various API references from Gelato over to their new

product

Prioritising is a challenge.

Rosalie’s presentation

The Art of Documentation and
Readme.md

Ben Hall
Ocelot Uproar

Whole new ecosystems arise around new technologies, which means we

all have a lot to learn. “Documentation is helping developers to have more

comfort with how they approach new technologies.”

What is the art of documentation? The user journey begins long before

landing on the docs site. How can we make the learning journey be more

integrated into the product experience, to make it less explicitly a task?

We need to find the developer’s flow channel with our documentation:

not too challenging so we do not trigger anxiety, but not too simple either

because then it would be boring. Research results show that teaching

others/immediate use gives the highest retention rates when learning.

Stage 1: Discovery. Where users decide wether to use the product. At the

https://www.youtube.com/watch?v=-j74Qw1B_lE&list=PLCog6XCmmzvBlFf6ahWrUZtkW2mwdQxOb&index=3
https://twitter.com/Ben_Hall

119

starting point users don’t know anything of the product, so we need to

be very clear and concise with the opening tagline. Generally build on

experiences to express what’s happening within the product. (Example

intro lines from: Kotlin, Calico, Kubernetes) No need for an outrageous

markting pitch at this point.

Stage 2: Getting started The user has a dream of how the product will

make their life perfect, so we want to prove that. Good example: Stripe.

Build up confidence and trust that the product will solve the user’s

problems. Problem: no interactive possibility on mobile/iPad, they

would loose out on the journey.

Good example of learning while starting: OpenShift Origin, GO.

Unintentional blockers:

• broken/incomplete samples are very frustrating

• source-code-only releases make it much harder to start

• video content: too deep or too wide explanation takes out of the

flow and even a small change needs a complete update

• jumping over the gettings started steps

Stage 3: Problem solving Show a prototype for what can be achieved,

give working examples. Give seamleass options for adjustments

in the code snippets so the exploration flow is not broken. Be very

straightforward. Catch people on their leaning journey with these good

practices before they become disillusioned of the product.

Stage 4: Guidance

• Tutorials, how-to guides, discussions.

• Take the user to be an expert.

• Good example is WeaveWorks, Twilio. Take users to the most

relevant documentation with seamless choices.

• Slack: you can edit/modify code snippets and get a preview what

the result would look like.

• Community: show how they use the product and involve them to

120

catch the long tail. See Digital Ocean.

Stage 5: References Readme.md is your gateway to the product, it sets

the tone and show what the product is good for. Most importantly, tell

why the project exists at all.

Building community: Need to include the contributor guidelines, license

and where to discuss the project. It is possible to build a community

around the documentation itself. Good examples: Kubernetes sig-docs,

Docker docs hackathon. Contribution has to be simple. Github is not too

friendly for small changes, but you can work around that.

Ben’s presentation

Opening a Door to a Sleeping Castle

Jaroslaw Machaň
Erste Bank

A talk about the APIs built in Ceska Bank (Erste Bank in Czech Republic)

and the story behind. How do banks go about in the digital transformation

age? An API platform then an API economy has to be built for a bank to

survive the coming years.

With 10k employees and thousands of processes behind, change is hard

and slow. “In every big corporation there must be some islands of positive

deviation who could break this.”

The main motivation to build an API platform wasn’t PSD2 but the

developers (internal and 3rd party). Need place for rapid prototyping. 2

https://youtu.be/h0b1d-zuHi4
https://twitter.com/csas_devs

121

years ago switched to agile dev cycles.

Prerequisites for being ready for PSD2:

• Long-term based high quality relationship with outside community.

• State of the art applications, comply to world wide standards (not

local).

Ceska Bank’s Dev portal:

• Focus on the developer experience.

• Single page application, showing the 6 APIs meant for 3rd party

developers’ use.

• API documentation written in the Apiary platform.

• First bank in the world to release SDKs for their APIs.

• Keys via registration or use the sandbox.

• Sharing and co-operating with community.

Created Gustav in 2015 to show developers where to start with Ceska

Bank APIs. Still working, open source banking app.

Q&A with interesting background stories.

“You have to challenge your business.”

Jaroslav’s presentation

Documenting GraphQL at Shopify

Andrew Johnston
Shopify

At a company like Shopify, API management doesn’t know what the

clients exactly want. They know that clients search for products, but a

product has several properties that the clients may or may not need in

https://developers.csas.cz/?lang=en
https://github.com/atp-team/Gustav
https://youtu.be/_JHoyusc_6U
https://twitter.com/andrewjtech
https://developers.shopify.com/

122

their specific case. GraphQL helps Shopify to only return the data that is

needed.

They use Jekyll static site generator for building up their

documentation, in three main steps:

1. Remove the old docs before running the build task.

2. Run a query on the GraphQL endpoint using graphql-docs for

receiving the actual schema.

3. Generate HTML files from the schema. The files are structured into

folders representing the navigation. The changes in documentation

can be seen using git diff.

Although the queries are self-documenting (based on the nature of

GraphQL), technical writers have key roles in the doc generation

procedure, such as:

• complementing the raw GraphQL schema with descriptions

(Facebook’s Graph API documentation was a great example for

their writers),

• writing educational materials for user onboarding.

Need detailed conceptual docs to become familiar with the specific

business domain, and to build up some confidence making queries and

mutations. Once you are there however, you don’t need reference docs

anymore.

Andrew’s presentation

https://youtu.be/uuzsEfLaGnU

123

How can API documentation be
inherently agile?

Jennifer Riggins

Jennifer explores then contradicts that documentation is inherently un-

agile: she shows many examples and quotes opinions on how docs fit in

the agile circle.

Documentation is the number one thing API consumers want, it is

the basis of their decision-making. In the world of micro-services and

containers, everything has to work together and although documentation

is less likely to happen it becomes more and more necessary.

Early-on docs allow prototyping, simpler code and true collaboration.

Your documentation is your SEO. It has to say what your API does.

Transformations:
• Worldpay waterfall to agile

• Sendgrid uses modified RICE on their Kanban

• Rob Woodgate’s notes on docs being part of definition of done

Advice to tech writers:

• Create a style guide then get the devs document their code.

• Template, checklists.

• Automate.

• Docs have to live alongside the code to stay up to date.

Jennifer’s presentation and slides.

Original recording of the meetup by Kristof Van Tomme,

Creative Commons Attribution Share-Alike License v3.0

https://twitter.com/jkriggins
https://pronovix.com/agile-docs#stella
https://sendgrid.com/blog/double-your-velocity-without-growing-your-team-with-rice/
https://pronovix.com/agile-docs#rob
https://pronovix.com/agile-docs#chris
https://youtu.be/IeW6t5KgNKc
https://www.slideshare.net/eBrandingNinja/apithedocs-how-can-api-documentation-be-agile
https://twitter.com/kvantomme

124

EVENTS

Agile The Docs

https://pronovix.com/agile-docs

DECEMBER 5, 2016

Explore the tools, processes and challenges documentarians have in an

agile development team

London UK

https://pronovix.com/agile-docs
https://pronovix.com/

125

• Rosalie Marshall: Challenges Facing Technical Writing

• Stella Crowhurst and Jamie Measures: The Worldpay Shift from

User Guides to Experiences

• Rob Woodgate: Should Documentation be Part of the Definition of

Done?

• Ellis Pratt: Agile Authoring Methodology: Learning from Lean

• Emma Hughes: Bringing Agile to Technical Documentation at

Lavastorm

• Kristof Van Tomme: Tempo - an Alternative Reason for Agile

• Ben Hall: Lightning Talk on Katacoda

• Adrian Warman: Lightning Talk: Documentation Management

Practices at IBM

Challenges Facing Technical Writing

Rosalie Marshall
Technical writer at Government Digital Service UK

Early 2014: GDS had many products with documentation but
no tech writers. What does good government documentation
look like? Shall they use automation tools like Swagger or Raml?
They were then still relying on their developers to write their
documentation - but developers’ priority is the product. Hired/
hiring tech writers.

GDS follows the agile principles but they face challenges: the
focus is on the product not the docs.

Challenge #1 is the approach that the product should be so
good it should speak for itself, so we need no documentation.
To promote docs, show user research that users do struggle
and need documentation. Sometimes it’s hard to translate user

https://pronovix.com/agile-docs#rosalie
https://pronovix.com/agile-docs#stella
https://pronovix.com/agile-docs#stella
https://pronovix.com/agile-docs#rob
https://pronovix.com/agile-docs#rob
https://pronovix.com/agile-docs#ellis
https://pronovix.com/agile-docs#emma
https://pronovix.com/agile-docs#emma
https://pronovix.com/agile-docs#kristof
https://pronovix.com/agile-docs#ben
https://pronovix.com/agile-docs#adrian
https://pronovix.com/agile-docs#adrian
https://twitter.com/RosalieMarshall

126

reseach data into a prioritized to-do list.

Challenge #2: the docs writers are only brought in when
the product is ready. They loose data from middle of the
developement process.

Solving these challenges by:

a/In different groups their tech writers integrate differently
PAAS, Ben: treat the docs as developer stories, end-of-week
email to update on docs changes. Registers, Jen: not part of the
dev cycle, watches out for pieces of work that might impact the
docs. Verify and Notify, Cathrine: developer makes the docs
changes and tech writer reviews the pull request.

Documentation is not part of definition of done in GDS. Open for
opinions on that.

b/ Creating standards to assure users that the product is up-to-
date, coming from a trusted resource and is accurate.
User research to create a template to target different users’
information needs.
Documentation prototype format for developers within the
government.

Keen to learn about how to make GDS content more agile

Rosalie’s presentation

https://youtu.be/rZXeYCywnFs

127

The Worldpay Shift from User Guides to
Experiences

Stella Crowhurst
Content Strategy Director at Worldpay

Jamie Measures
Information Architect, global eCommerce at Worldpay

How they shifted from waterfall to agile user documentation in the past 2

years.

The too few technical writers would have to sit together with the

development teams and keep the documentation always updated,

sometimes even write it. 30-40 different projects every year, developer

teams all over the world using various methodologies: time consuming

and hard to plan.

“Working in an agile environment is tough: developers are very

opinionated and sometimes they don’t like to have a technical writer

sitting there every day and asking questions.”

Their key to succes was to really get control of the writing process and

how they relate it with agile.

• Be more assertive and own the writing process.

• Inform developers what and when will be needed.

• Write only what is really necessary and focus on the persona.

• When the pressure is really bad, do co-writing sessions and/or

workshops.

• Inside surveys, kick-off meetings with the project manager.

Decided to focus on developers’ integration documentation, and give

FAQ-style docs to support users with a problem.

https://twitter.com/CrowhurstStella

128

“One of the ways we gain respect with what we’ve been doing is asking

those brilliant questions that tech authors ask. [...] We genuinely influence

the user interface design in a positive way. An extra thinking brain in the

development cycle of the product, asking those innocent questions that

developers tend to tunnel-vision away from.”

Stella’s presentation and slides

Should Documentation be Part of the
Definition of Done?

Rob Woodgate

For true scrum cycles we need fully multi-functional teams, which we

don’t really have. Also, software engineering is still a linear process and

some part of documenting always falls to the end. Rob gives us a list of

questions to help make a decision whether to still include documentation

in the DoD.

See our blog post and Rob’s own notes and links.

Rob’s presentation and slides

https://youtu.be/XQKvzIxkGlk
http://www.slideshare.net/vasslaura/agilethedocs2016londonstella-crowhurst-jamie-measures-worldpay
https://twitter.com/agiledoc
https://pronovix.com/blog/should-documentation-be-part-definition-done
http://www.agiledocumentation.co.uk/2016/12/agilethedocs-presentation-slides-and.html
https://youtu.be/k182hLBXVTg
https://docs.google.com/presentation/d/1lud0MjkshJ4awS1DR40T7L1grk17UHjD9G8dDWpibAQ/pub?start=false&loop=false&delayms=3000

129

Agile Authoring Methodology: Learning
from Lean

Ellis Pratt
Director at Cherryleaf

Being lean is to keep the whole process, from beginning to end as

efficient as possible. Not just the software development team. Divide

work into single-focus tasks (automation), let anyone be able to stop the

process in case of error (autonomation).

Identify waste:

• muda: not adding value to the user. Unnecessary content creation.

• muri: overburdening. Too difficult/too much work for the time given.

• mura: unevenness, waiting around. Delays in approval process.

There is essential waste too, for example quality testing.

Load balancing: get rid of over- and underwork, even out the workload.

Bring in subcontractors for example - but they need to know the tools too.

Templates help.

Docs as code: act as a content developer. Add the docs tasks to the

Kanban board, refer in title to the coding reference numbers. Review and

edit as if it’s the calibration&defect of code.

Deliverables: just enough documentation at first sprint. You can publish

docs in increments.

Optimise the whole: make people aware of the costs of documenting

late, where that might generate waste.

https://twitter.com/ellispratt

130

Lean and agile methods spotlight process problems, so you do need a

commitment to resolving those.

Ellis’s presentation and slides

Bringing Agile to Technical
Documentation at Lavastorm

Emma Hughes
Technical writer at Lavastorm

There are 2 scrum developer teams at Lavastorm and Emma is the one

technical writer.

Tools:

• Legacy docs were all in Word/pdf, switched to MadCap Flare,

publishing integrated HTML help

• Integrate with Perforce

• Slack - makes docs life visible, also gives peek into what the

developers are up to

• JIRA - task tracking on separate docs Kanban board but the devs

mark need for docs-writing on their JIRA tickets

• RealTimeBoard - using the devs’ tools

Challenges:

• Balancing her time between processing their legacy

documentation and writing up new developments.

• Only attends relevant scrum meetings but checks highlights.

• 2-weeks sprints. Docs are not part of the definition of done, but

unofficial agreement on keeping the docs up-to-date.

• Work with UI team to keep ahead.

https://youtu.be/dY77qPOJ0kw
http://www.slideshare.net/ellispratt/towards-an-agile-authoring-methodology-learning-from-lean-agilethedocs-conference

131

Emma’s presentation

Tempo - an Alternative Reason for Agile

Kristof Van Tomme
CEO at Pronovix

Frequency is a function of time: it is essential for change.

Observe the changes in tempo all around us: teams also have their rythm.

Be sensitive to the tempo of the group, you can modulate it to your

benefit. (see ‘Tempo’ from Venkatesh Guru Rao) As in FM, we need a

carrier wave in a company: the agile process sets this steady rythm and

each smaller team can resonate with it.

Kristof’s presentation

Lightning Talk on Katacoda

Ben Hall
Founder of Katacoda, interactive learning environment for software

engineers

Katacoda is a technical learning platform directed toward software

developers, where the documentation is shifted to very real-world

scenario heavy aspects. Start with a quick overview of concept, then drop

people into a live developer environment. These are virtual machines

https://youtu.be/K4A5rxz5mfo
https://twitter.com/kvantomme
https://youtu.be/tn07M-et4Dc
https://twitter.com/ben_hall?lang=en
https://katacoda.com/

132

hosted directly in the browser or configured as per the developer’s

specific needs.

Third parties can embed the developer platform on their sites, and so

have a more interactive tutorial where the technical preconfigurations are

already done (and thus this initial barrier removed). Developers engage

better.

They’ve built an editor that uses markdown and through a set of

selections one can set up the environment to work in - but this was still

a disconnect from the browser experience. They now use Github as an

easy starting point for documentation (in markdown), this way allowing

the devs to use their own usual workflow and tools and thus helping

continuous delivery for tech guides.

Grammarly’ automated suggestions helps reduce file changes back-and

forth and generally reduce the editor’s work.

Ben’s presentation

Lightning Talk: Documentation
Management Practices at IBM

Adrian Warman
Content Choreographer (Information Development and Content Strategy)

Lead at IBM UK Cloud Data Services.

Within the software development group at IBM, the various teams

use doc tools and techniques that reflect the rhythm of their product

development process.

• IBM’s old style products with yearly release cycles can make use of

traditional documentation tools.

https://www.youtube.com/watch?v=Lvcufn_RpuM
https://twitter.com/warmana

133

• As IBM acquired Cloudant, they not only got the product but its

mindset as well. The documentation is written in markdown and

stored on github.com.

• IBM Graph is a hybrid sort of internal project using markdown and

github.

Old established processes are very difficult to change and an outside

developer is very unlikely to write documentation to an old-style

technology. But in a never environment they are very likely to write initial

contribution (and some cases full scale contribution) particularly to API

reference documentation, less so to user guides. Projects using open

technologies were able to get a lot more interaction both internally and

externally, with daily or even hourly updates.

IBM’s content creation process is changing: “technical writing” turned

“information architect” turned”content designer”. They receive beta-

content from developers, marketing, sales, customers, which they then

refine with the UX and the key message in mind.

Important but often omitted: Accessibility testing, video/augmented

reality technologies. Written words are only a part of the user experience.

In the future: Emphasis on user experience, designing the flow, bringing

together the different media types and expectations. Using the AI

Watson to real-time analyze the support calls to determine the subject

of the conversation and refer the user to the corresponding information

resource. The tech writers are only helping Watson to help the user.

“As technical writers we are becoming content choreographers,

ringmasters, guiding people through a rich customer experience.”

Adrian’s presentation

https://www.youtube.com/watch?v=1kmW3rv5qyY

134

Continuous Documentation

Chris Ward
Gregarious mammal

Technical writer at contentful.com

Open source testing tools tips to assist continuous deployment of docs.

Chris wrote about these fields in more detail and gave coding snippets

too on Codeship’s blog, see the links.

Spelling, grammar

Markdown-spellcheck uses open source dictionary files. Adjust your

script to your preferences (e.g. report mode, ignore numbers and

acronyms). Create a separate repository with the typical custom language

(not a real word, but not wrong), so they won’t get flagged by the checker.

Decide what to let through.

Atom editor with extensions

Write-good gives a report-like output, more of a guidance, hard to

automate its evaluation. You can write different tests for it, e.g. weasel-

words

Testing codes

• Dredd for API examples (in Blueprint and Swagger/OpenAPI

formats),

• Inline code testing is a little harder, Sphinx can do it for Python.

Screenshots automation

https://twitter.com/ChrisChinch
https://www.gregariousmammal.com/
https://blog.codeship.com/improve-documentation-by-automating-spelling-and-grammar-checks/
https://www.npmjs.com/package/markdown-spellcheck
https://hackernoon.com/making-atom-even-more-awesome-my-setup-e7a89969a876#ab46
https://www.npmjs.com/package/write-good
https://blog.codeship.com/testing-code-examples-in-documentation/
https://blog.codeship.com/automating-screenshots-in-documentation/

135

• Capture a screenshot along your successful selenium tests.

• Idea: from your examples you could generate a json and make

videos at a continuous integration. Works for examples from

terminal.

Code examples and live code playgrounds

Languages like JavaScript or Ruby offer interactive possibilities with

the documentation. E.g. JSFiddle lets you embed your JS and people

can experiment with the output while reading the docs. Autogenerate

the code, feed the results to a service with an API and generate the

playground dynamically.

Chris’s presentation

Original recording of the meetup by Kristof Van Tomme, Creative
Commons Attribution Share-Alike License v3.0

https://jsfiddle.net/
https://www.youtube.com/watch?v=-q1y-9rbsT8
https://twitter.com/kvantomme

136

EVENTS

API Documentation at WTD NA 2017

https://pronovix.com/blog/api-documentation-wtd-na-2017

JUNE 1, 2016

by Laura Vass

https://pronovix.com/blog/api-documentation-wtd-na-2017
https://pronovix.com/

137

The annual North-American Write The Docs conference this May

featured 2 API documentation redo presentations:

1. Lyzi Diamond described Mapbox (formerly a part of Development

Seed) documentation automagic in detail,

2. Sarah Hersh talked about the journey that NPR One undertook

towards a new task-based approach for their API’s developer

documentation.

In this post we aim to give you an account of these presentations, plus a

little extra takeaway.

Lyzi Diamond: Testing: it’s not just for
code anymore

Lyzi Diamond from Mapbox showcased the use of docbox on their own

documentation, through remark and retext. Lyzi showed why it works for

them to test everything.

The story started in 2015, December, when Mapbox had a confusing

TOC for their developer docs. They wanted the docs to be consistent,

complete and correct, and contribution had to be possible.

The inner workings of the automation process

Their API documentation is in markdown, in a custom specified format

which then gets rendered, tested, lintered into a human-readable output.

1. The first batch of transformation happens with remark, a markdown

parser that builds a syntax tree from markdown files. Based on

predefinition, each syntax is transformed to be rendered in the left,

right or middle column.

http://www.writethedocs.org/conf/na/2017/
http://lyzidiamond.com/content-testing-wtd
http://lyzidiamond.com/content-testing-wtd
https://twitter.com/lyzidiamond
https://www.npmjs.com/package/docbox
http://remark.js.org/
https://github.com/mapbox/retext-mapbox-standard/blob/master/README.md
http://remark.js.org/

138

Remark supports many linters and it also has built-in code generation.

Remark is a free and open-source tool, well supported and documented.

2. The second batch of automagic comes via Mapbox’s version of

retext, they use it to enforce linguistic correctness and consistency.

Retext is an ecosystem of plugins that can do much automagic

exactly to your custom specifications. For example: you can lint for

simple typos or search for words on your no-list.

Overall perks for the whole team

The enforced structure and linters highlight inconsistencies in the

original documentation and stimulate the various groups and roles in

the company to talk with each other. Not only outsiders contribute:

also insider non-coders now have a reference framework for pointing

out when and how an API differs from the others on their platform.

Furthermore: the rigorous documentation workflow brought group-

wide understanding with it and asks for consistent decision-making and

cooperation.

We got the directions towards the sets of tests (content-test, copy-cop,

Hemingway app) and can start using them on our own projects. Thank

you!

docbox (Lyzi Diamond, Mapbox)

http://remark.js.org/
https://github.com/mapbox/retext-mapbox-standard/blob/master/README.md
https://github.com/katydecorah/copy-cop
http://hemingwayapp.com/

139

Sarah Hersh: Start with the tasks, not the
endpoints

NPR One needed a developer center to enable the extension of the

NPR One experience to new platforms and audiences, furthering NPR’s

original goal of a more informed public.

Sarah illustrated task-based docs with a metaphor of the self-serving

coffee shop: one conference attendee goes into a coffee bar in search of

that first cup in the morning, potentially jetlagged. What they find inside

is no staff but a wall of documentation: confusing and just too much

information. What the customer would need at this point is to find clear

steps getting her task done. The point is, accurate and relevant doesn’t

equal helpful.

How do we define tasks? When you consider what the developer can

do with your API, then the endpoints are the means and not the goal. Do

the tasks align with the user, the API-owner’s goals and priorities? Before

anything else, your team must be clear on why you give access to the API.

At NPR One, they defined developer personas:

• What is the persona’s role in their organization?

• What are they trying to accomplish? What do they want to find in

the docs?

• How do they usually go towards this goal? Does this persona go

through a typical problem-solving process?

• Do they have any known attitude/relationship towards the product

or the brand in general?

http://bit.ly/task-based-docs
http://bit.ly/task-based-docs
http://dev.npr.org/

140

Ultimately, we need to know what developers are hoping to walk away

with.

NPR One’s UX research and logged data analysis helped identify the

common pain points, e.g. developers complained that they had to visit

multiple pages before finding all the information needed.

NPR One prioritized the defined tasks. The team then decided to highlight

the most common, so called umbrella tasks. They put the API reference

as a separate main menu item for the more experienced developers

but kept the rest of the documentation in a classic, shallow navigation

structure under developer guide.

Defining Personas (NPR One)

Developer Center (NPR One)

141

The new developer center received very positive feedback. As a result,

the company introduced the task-based approach to other areas, such

as the newsletter - which yielded 40% higher opening rates. The idea is to

focus on what the reader might accomplish with the new feature rather than

just presenting the feature as a new one.

Sarah provided us with a checklist for making our docs task-oriented, and

a rinse-and-repeat example workflow to get it done.

Andrea Longo showed the sysadmin’s perspective on software use

and incident management, and although she was talking of software in

general, one of her points is very relevant to API documentation: it is not

only the end product (versions) we need to document. The reasons and

data for our decisions along development can be equally important, at

least for internal use.

Many other areas were covered by the speakers, the video recordings are

on youtube.

Checklist for Task-orientated Docs (NPR One)

https://twitter.com/feorlen
http://www.writethedocs.org/conf/na/2017/speakers/
https://www.youtube.com/playlist?list=PLZAeFn6dfHpkBld-70TsOoYToM3CaTxRC

142

EVENTS

DevRelCon Beijing 2017

https://pronovix.com/blog/devrelcon-beijing-2017

AUGUST 7, 2017

by Katalin Nagygyörgy

https://pronovix.com/blog/devrelcon-beijing-2017
https://pronovix.com/

143

Seven years ago I had the chance to visit China, and I had a great time

exploring the cultural heritage, large cities and gastronomy. So when

my talk got accepted for the first DevRelCon in Asia, I was excited to

see China again — this time from a professional point of view. My plane

landed in a dust storm so Beijing hid its face while I went to the hotel and

took a nap to help with my jet lag. I woke up in the early afternoon in a

different place: the storm cleared and left a sunny sky behind.

We had the opportunity to meet the speakers and the main organizers,

and to check out the event venue in MeePark before the conference

which actually took place in the well known 798 Arts District of the

city. This place is an innovation area for artists and tech people in

former factory buildings, so it provided a perfect space for sharing and

discussing trending IT topics.

Three main topics stood out for me in the presentations, the first about

developer relations in general, the second about the importance of open

source projects and the third about the significance of trust building.

Dev Rel trends in the East and in the
West

The essence of developer relationship building in areas like

communication, outreach, dev characteristics and talent acquisition was

an important topic throughout the day.

The lineup started with the inspiring ideas of Matthew Revell – the

founder of DevRelCon – about effective developer outreach strategy.

He introduced a way to segment the developer audience so that we

can specifically target each group. The next talk by He Lishi was a nice

addition with practical dev evangelism tips for sales and marketing

purposes. Atsushi Nakatsugawa focused on problems that a company

should solve before starting to do devrel. These talks provided a great

http://www.devrel.cn/
https://en.wikipedia.org/wiki/798_Art_Zone

144

basis to the panel discussion about trends all over the world.

Other speakers focused on community building and engagement. Yin

Ming introduced his community and explained how you can identify

what developers like and how to find the best communication formats

for them. Jiang Tao on the other hand, spoke about the importance

of developer community and talent acquisition and why this matters

when building AIs. It was also nice to see how GitHub’s student program

provides opportunities for students so they can learn faster how the dev

world works via Joe Nash.

Why open source projects are important

Although it was surprising to see so much attention was dedicated to

open source, it was interesting to see how the conference devoted

https://support.twitter.com/articles/20175256

145

time to introduce different viewpoints on this topic, and on its role in

strengthening the local dev community. Quincy Larson, the founder of

freeCodeCamp, joined the event remotely and shared his insights about

how building open source communities is helping society at large. From

the Chinese point of view Li Jiansheng spoke about the current status of

open source communities, and why those are important in a developer’s

life. Fang Qunjie then explained how devrel can help build better open

platforms for communities. Ding Qi’s presentation was a great live

example which introduced the open source strategy of Alibaba and how it

helped the platform succeed.

https://support.twitter.com/articles/20175256

146

How to build trust

Building trust emerged as the third large topic, and was introduced

through two different models: Phil Leggetter talked about the AAARRRP

model, an upgraded version of the startup community’s Pirate Metrics. He

begins his model with Awareness and ends it with Product.

I gave a talk about the importance of trust in developer portals and

explained how you can build trust and successfully strengthen your

relationship with developers. Typically developer portals have two

conflicting objectives. On the one hand, every developer portal aims

to delight developers with a great product experience and to convince

them to register as early as possible. On the other hand, companies want

only trustworthy people to use their products, they want to avoid misuse.

To create a balance between these two objectives it is important to

understand the structure of trust and how to apply it to products.

http://www.expectedbehavior.com/experiments/pirate_metrics/

147

Huge community outreach

Besides the 200 participants, the event was livestreamed to developers

at venues in five different cities around China, making this a huge

conference. The organizers Hoopy and the Chinese partner DevEco did

an amazing job, reaching out to so many people at the same time. The

whole event was well-organised and highly professional. In the end, we

all got a nice plaque — a great memory keepsake.

https://hoopy.io/
http://deveco.io/

148

Authors

Cristiano Betta

Cristiano Betta is a Developer Experience designer who

helps companies small and large to improve their

developer onboarding, activation, and support. He likes to

look at great developer onboarding flows, analysing and

documenting the best practices and pitfalls of common

design practices. Although he has over 15 years of

development experience, he believes that at the core we’re

all beginners at some things, and documentation and

onboarding should reflect that notion.

In the past he’s worked as a contractor, startup founder,

event organiser, and developer advocate at Braintree/

PayPal. Don’t buy him coffee, just get him a matcha green

tea instead.

149

Dezső Biczó

Dezső is a Senior Software Engineer and Lead Architect at

Pronovix. He wanted to have a computer from a very young

age — not for playing games, but to do programming and

other cool stuff. He started learning web programming at

high school where he met his mentor László Csécsy

(boobaa) who introduced him to Drupal. He earned a BSc

degree in Bachelor of Business Information Technology

and later an MSc degree in Software Engineering at the

University of Szeged in Hungary. Thanks to his enthusiasm

for computers and programming he is always ready to

improve his skills, and can quickly learn new languages and

technologies. Nowadays he is building complex Developer

Portals for Pronovix customers and contributing to our

Drupal 8 Developer Portal distribution as an architect.

Kathleen De Roo

As a copywriter and member of the content team at

Pronovix, Kathleen is responsible for writing, reviewing and

editing website copy and blog posts, mainly on the many

aspects of developer portal documentation. She’s got an

interest in information architecture. She holds master’s

degrees in history and in archiving / records management.

150

Adam Duvander

Adam DuVander loves APIs and the people behind

them. He helps Zapier’s API partners integrate with its

automation platform to empower their shared customers.

Previously he led developer relations for database API

Orchestrate (acquired by CenturyLink Cloud) and developer

communications at SendGrid. He spent four years as a

writer, editor, and analyst for ProgrammableWeb, journal

of the API economy. Way back when he wrote the book on

mapping APIs, Map Scripting 101, and covered developer

topics for Wired.

James Higginbotham

James Higginbotham is an API and microservice

architecture coach. He provides API strategy, design and

documentation services to enterprise IT and software-

centric businesses. You can learn more about how James

can help by visiting his website.

Diána Lakatos

Diána is a Senior Technical Writer at Pronovix. She is

specialized in API documentation, topic-based authoring,

and contextual help solutions. She writes, edits and reviews

software documentation, website copy, user documents,

and publications. She also enjoys working as a Program

Monitor for NHK World TV and Arirang TV.

https://zapier.com/engineering/
http://launchany.com/api-solutions/

151

Adam Locke

Adam Locke is a technical writer, mountain biker,

bookworm, and craft beer nerd. He and his wife live in the

East End of Pittsburgh, PA with their elderly dog.

Katalin Nagygyörgy

Kata is a User Experience Researcher at Pronovix. She

collaborates with developer portal customers to define

architectural decisions based on their business strategy.

She also provides them with possibilities to make sure the

product communication resonates with current and future

users, mostly developers.

As a psychologist, she is passionate about research

methodologies and gamification. She has a PhD in

psychology for which she did research into the motivational

background of online gaming.

Kitti Radovics

Kitti started to work at Pronovix in June 2015 as an iTrainee,

and this was the first time she met with web programming.

During the trainee programme, she evolved a lot on the

field of theming and Drupal site building with the assistance

of her colleagues. Now she is a Front-End Developer and

Site Builder at Pronovix and she is also responsible for

coordinating internal projects. Since January 2017, she is

also the Product Owner of our Drupal 8 Developer Portal

project.

152

Stephanie Steinhardt

Stephanie studied technical documentation with a diploma

in software documentation. Since 2005 self-employed as a

freelance technical writer with focus on authoring e-training

content. Since December 2014 also research assistant at

the “Expert-oriented Optimization of Software Developer

Documentation” project at the University of Applied

Sciences in Merseburg.

Kristof Van Tomme

Kristof Van Tomme is an open source strategist and

architect. He is the CEO and co-founder of Pronovix. He’s

got a degree in bioengineering and is a regular speaker at

technology conferences. For a few years now he’s been

building bridges between the documentation and Drupal

community. He shares his time between Belgium where he

lives, Hungary where Pronovix has its office, and London

where he started the local Write the Docs meetup, the

group that initiated recent conferences, like Versioning the

Docs, Agile the Docs and API the Docs.

153

Laura Vass

Laura founded Pronovix with Kristof, while still working

in toxicogenomics R&D back in 2005. As co-owner she

overviews the company’s financials and leads the content

team. In daily operations she is mostly active as writer/

editor for website copy, articles and blog posts, marketing

copy and user guides. Proud contributing writer of the

Drupal 8 end user documentation. She is also a zentangles-

evangelist, eliminating imaginary bottlenecks to creative

freedom.

	Introduction
	Articles
	Api Documentation – What Software Engineers Can Teach Us
	8 Great Examples of Developer Documentation
	Developer Portal Components -
Software Development Kits (SDKs)
	Great Api Documentation Requires Code Examples
	Free and Open Source API Documentation Tools
	Documenting APIs with Swagger
	Documenting web APIs with the Swagger / OpenAPI Specification
in Drupal
	Web APIs in Drupal: Success Takes More than an Endpoint
	7 Trust Signals That Help an API Succeed
	The 8 Stakeholders of Developer Portals
	Upstream Developer Experience:
a Role for Developer Portals in Enterprise API Design
	The Documentation Maturity Model

	Events
	API The Docs, London
	Agile The Docs
	API Documentation at WTD NA 2017
	DevRelCon Beijing 2017

	Authors

